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Abstract

Edge computing has emerged as a transformative technology in public safety
and has the potential to support the rapid data processing and real-time
decision-making during critical events. This paper introduces the BRAVE
framework, a cutting-edge solution where the UAVs act as Mobile Edge
Computing (MEC) servers, addressing users’ computational demands across
disaster-stricken areas. An accurate UAV energy consumption model is in-
troduced, including the UAV’s travel, processing, and hover energy. BRAVE
accounts for both the users’ Quality of Service (QoS) requirements, such as
latency and energy constraints, and UAV energy limitations in order to de-
termine the UAVs’ optimal path planning. The BRAVE framework consists
of a two-level decision-making mechanism: a submodular game-based model
ensuring the users’ optimal data offloading strategies, with provable Pure
Nash Equilibrium properties, and a reinforcement learning-driven UAV path
planning mechanism maximizing the data collection efficiency. Furthermore,
the framework extends to collaborative multi-agent reinforcement learning
(BRAVE-MARL), enabling the UAVs’ coordination for enhanced service de-
livery. Extensive experiments validate the BRAVE framework’s adaptability
and effectiveness and provide tailored solutions for diverse public safety sce-
narios.
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1. Introduction

Natural disasters like earthquakes, landslides, and wildfires can result in
extensive loss of life and property, along with significant economic repercus-
sions for the impacted regions. The integration of Unmanned Aerial Vehicles
(UAVs) with Artificial Intelligence (AI) technology is transforming disas-
ter response strategies [1]. Due to their affordability, maneuverability, and
ease of deployment, the UAVs can quickly access areas that are challeng-
ing to reach by other means. UAVs can act as Mobile Edge Computing
(MEC) servers to collect data from the disaster areas and process them on
board to support the search and rescue operations [2]. In this paper, the
BRAVE framework is introduced to enable the UAVs to optimize their path
planning for the effective data collection and processing in disaster-stricken
areas. Specifically, the users in each disaster area autonomously determine
their optimal amount of offloaded data to the visiting UAV, while the UAVs
exploit a wide variety of reinforcement learning algorithms to determine their
optimal path trajectories while balancing the objectives of maximizing the
disaster response efficacy with their physical energy limitations.

1.1. Related Work

The problem of data offloading to UAV-MEC-enabled systems by exploit-
ing AI-driven mechanisms has been thoroughly studied in the recent litera-
ture [3]. A collaborative MEC framework using multiple UAVs is introduced
in [4] to minimize the task execution delays and the energy consumption
by jointly optimizing the UAVs’ trajectories, task allocation, and resource
management through a cooperative multi-agent deep reinforcement learning
(DRL) approach. A similar approach is followed in [5] by mainly focusing
on the optimal placement of the UAVs to manage unexpected high traffic
demands by proposing a low-complexity rule-based method and a Markov
Decision Process (MDP)-based reinforcement learning (RL) approach. Sev-
eral research works have focused on the energy efficient optimization of the
data offloading process in UAV-MEC-enabled systems [6]. The authors in
[7] focus on balancing the power consumption and the UAVs’ flight efficiency
while supporting the service offloading in smart city environments, by propos-
ing a Mixed Integer Linear Programming optimization model. The problem
of minimizing the combined communication, computation, and UAV flight
energy costs is addressed in [8] based on the block coordinate descent and con-
vex approximation methods. A generative neural networks-based data-driven
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heuristic framework is designed in [9] to efficiently optimize the deployment
of UAV-based aerial MEC servers for optimizing the energy-efficient data
offloading process.

Recent research efforts have been mainly focused on the problem of de-
termining the UAVs’ optimal path planning to optimize the data collection
and processing while supporting a wide range of applications [10]. These
approaches are organized in collaborative and distributed methods among
the UAVs, promoting the UAVs’ coordination [11] and distributed decision-
making [12], respectively. A collaborative path planning algorithm is intro-
duced in [13] based on the multi-agent Deep Q-Networks aiming at maximiz-
ing the data collection efficiency and minimizing the coverage overlap for the
UAVs serving a set of areas. A similar collaborative path planning model is
proposed in [14] based on an independent proximal policy optimization-based
model targeting the minimization of the UAVs’ energy consumption. Focus-
ing on the UAVs’ distributed decision-making regarding their optimal path
planning, a single-level DRL model is analyzed in [15] to support the UAVs’
energy-efficient path planning, optimal resource allocation and task offload-
ing. A two-level DRL framework is designed in [16] to determine the UAVs’
optimal trajectory to support high data acquisition success rates during the
data collection process in complex environments with mobile and emergency
nodes. A similar approach is analyzed in [17] by introducing a multi-objective
optimization algorithm for UAV-enabled offloading that balances the UAVs’
energy efficiency and safe path planning.

A small portion of the recent literature has extended its efforts in design-
ing tailored data collection and processing solutions for UAV-MEC systems
assisting public safety operations [18]. A multi-stage data offloading algo-
rithm is proposed in [19] for optimizing the UAV-assisted MEC networks
in disaster scenarios by balancing the computing power, user association,
and service quality under various constraints. A similar approach is followed
in [20] by proposing a gravitational search algorithm-based data offloading
strategy to optimize the UAVs’ energy, delay, and load balancing. A UAV
scheduling scheme is designed in [21] to support emergency response oper-
ations by reducing the age of information and packet loss rate in the data
collection process.

1.2. Contributions and Outline

Despite the significant advancements in UAV-MEC systems for data of-
floading, the existing literature primarily focuses on energy efficiency, task
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execution delay, and general-purpose data collection [22], without focusing
on the design of tailored approaches specifically for disaster-stricken environ-
ments. Additionally, several collaborative and distributed decision-making
methods have been explored, however, few research works introduce au-
tonomous user-driven data offloading decisions coupled with UAV path opti-
mization [23], especially under reinforcement learning frameworks aimed at
maximizing disaster response efficacy.

The BRAVE framework addresses these gaps by enabling the users’ au-
tonomous decisions on data offloading in disaster areas, while the UAVs
leverage diverse reinforcement learning algorithms to optimize their path
planning and balance critical disaster response needs with their own energy
constraints. The main contributions of this research work are summarized
as follows.

1. A realistic public safety environment is introduced, where the UAVs
act as flying MEC servers supporting the users’ computing needs by
visiting different disaster areas. An accurate and thorough UAVs’ en-
ergy consumption model is analyzed, incorporating the UAVs’ travel
energy, processing energy, and hover energy. Also, the users’ Quality of
Service (QoS) requirements are captured accounting for their latency
and energy consumption constraints.

2. The BRAVE framework is introduced to support the users’ benefit-
aware data offloading process and determine the UAVs’ optimal path
planning in public safety scenarios in order to maximize the data col-
lection from multiple Areas of Interest (AoIs) while considering the
UAVs’ energy constraints. The BRAVE framework consists of a two-
level decision-making mechanism.

3. The first level of the BRAVE’s framework models the users’ interactions
in each AoI as a submodular game enabling them to autonomously
determine their optimal data offloading strategies to the UAV that
serves the AoI. The existence of a Pure Nash Equilibrium are shown.

4. The second level of the BRAVE’s framework consists of a reinforce-
ment learning-based optimal path planning mechanism that enables
the UAVs to optimize their trajectory in order to maximize the data
collection and processing support offered to the users, while consider-
ing the UAVs’ energy constraints. A wide variety of RL mechanisms
is proposed ranging from probabilistic mechanisms accounting for the
AoIs needs for data processing (BRAVE-PRO) to softmax-like proba-
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bility distributions (BRAVE-EXPO) and Q-learning mechanisms (Q-
BRAVE).

5. The BRAVE framework is further extended to a collaborative set-
ting where multiple UAVs coordinate with each other to support the
public safety operations by engaging in a multi-agent RL mechanism
(BRAVE-MARL) to determine the UAVs’ optimal path planning in
order to maximize the efficacy of the provided edge computing services
to the disaster-stricken areas.

6. Detailed experiments have been performed to demonstrate the opera-
tional characteristics and benefits of the different BRAVE framework’s
variants to enable the Emergency Control Centers to adopt the solution
that better fits the needs of each public safety scenario.

The remainder of this paper is organized as follows. The BRAVE sys-
tem model is analyzed in Section 2, while the users’ optimal data offloading
mechanism is discussed in Section 3. The BRAVE-GREEDY framework,
which is used for benchmarking purposes, is designed in Section 4, while the
RL-based BRAVE variants are introduced in Section 5. The collaborative
BRAVE-MARL framework is proposed in Section 6. Section 7 discusses the
relevance of our work to the simulation modeling and practice, providing a
detailed discussion regarding the simulation modeling performed in this pa-
per. Detailed experiments are presented in Section 8 and Section 9 concludes
the paper.

2. System Model

A public safety scenario is considered, where a natural or man-made dis-
aster has occurred in a set of Areas of Interest (AoIs) A = {1, . . . , a, . . . , A}.
In each area a, a set of users Na = {1, . . . , na, . . . , Na} resides, who collect
data and offload them to a flying UAV u, which acts a MEC server, for further
data processing. The users’ collected data are of interest to the Emergency
Control Center (ECC), which coordinates the emergency response operation.

Each user na ∈ Na,∀a ∈ A has a computation task to be completed Tna =
(Bna ,Φna), where Bna [bits] denotes the user’s data and Φna [

CPU−Cycles
bit

] is
the computational intensity of the user’s task. Each user can choose how
much data to offload to the UAV, each time the UAV visits the AoI where
the user resides, from its strategy set Sna = {sna,min, . . . , sna,j, . . . , sna,max}
where sna,j ∈ [0, 1] is the percentage of the overall data of the user.
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The UAV is equipped with a limited energy supply E , starting from an
initial AoI a0, and must traverse a sequence of AoIs to gather and process data
in order to support the emergency response operation, ending at a destination
node afinal. The objective of the UAV is to identify a data collection and
processing path P = {a0, a1, a2, . . . , afinal}, such that the total data gathered
along the path, BP =

∑
a∈P

Ba, is maximized while ensuring that the total cost

of the path, EP =
∑k−1

k=1 w(ak, ak+1) ≤ E , does not exceed the UAV’s available
energy E . Specifically, consider a fully connected weighted graph G = (A, L),
where A denotes the set of AoIs and L represents the set of links. Each link
(ak, ak+1) ∈ L has an associated weight w(ak, ak+1), and every AoI a ∈ A
has an amount of data Ba =

∑
na∈Na

Bna ≥ 0 ∈ R+. The associated weight

captures the UAV’s energy spent to hover over the AoI for a short time period
to collect the users’ data, travel from AoI ak to AoI ak+1 and the energy
spent to process the users’ offloaded data in the AoIs ak and ak+1. Thus,
the corresponding weight is defined as w(ak, ak+1) = Ehover

UAV +Etrav
UAV +Eproc

UAV .
It is noted that in the extreme scenario where a0 = afinal, the UAV starts
and finishes at the same AoI. Also, we assume that the AoIs are far enough
from each other, thus, while the UAV traverses from one AoI to another, the
users’ offloaded data at the AoI ak are processed until the UAV reaches the
AoI ak+1.

The UAV’s energy cost to hover over an AoI for a fixed duration of time
thover [sec] in order to collect the users’ data is estimated as follows [24]:

Ehover
UAV = (4.917H − 275.204)thover (1)

where H [m] is the altitude at which the UAV is hovering at each AoI a.
The UAV has to expend a certain amount of energy to move from one

AoI ak to another ak+1. According to [24] the energy expended to fly from
one location to another is equal to:

Etrav
UAV = 308.709ttrav − 0.85 (2)

where ttrav [sec] is the time needed for the UAV to cover the correspond-
ing distance dak,ak+1

[m]. We consider that the UAV hovers above the cen-
ter of the AoI, which has (xa, ya, za) coordinates. Additionally, the UAV
is characterized by a velocity v = (xv, yv, zv) [m/s]. Therefore, the UAV’s

travel time among the AoI ak and ak+1 is ttrav =
dak,ak+1

v
, where dak,ak+1

=
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√
(xak − xak+1

)2 + (yak − yak+1
)2 + (zak − zak+1

)2 and v =
√

x2
v + y2v + z2v [m/s].

The UAV can potentially collect Ba =
∑

na∈Na

Bna data from an AoI a that

it visits. Considering the users’ optimal data offloading strategies s∗na,j (as
analyzed in Section 3 below), the UAV ultimately processes B∗

a =
∑

na∈Na

B∗
na

amount of data, where B∗
na

= s∗na,jBna . At the time that the UAV makes its
decision regarding its optimal path planning, the exact amount of data of-
floaded by the users is unknown and becomes available only upon the UAV’s
arrival at the AoI. Thus, the UAV accounts for a worst-case scenario regard-
ing the energy expenditure required to process the users’ total data in the
AoI, represented as follows [25], [26]:

Eproc
UAV = ξf 2

UAV

∑
∀na∈Na

ΦnaBna (3)

where fUAV [Hz] is the frequency of the CPU of the UAV’s MEC server and
ξ[ J ·s

CPU−cycles
s

] is the energy coefficient.

3. Users’ Optimal Data Offloading

The users at each AoI collect data from the disaster area and they offload
them to the UAV, when the latter one visits the AoI, for further processing.
The data rate experienced by each user na ∈ Na is derived as follows:

Rna = W log2(1 +
pnagna

I0 +
∑

∀n′
a ̸=na∈Na,

pn′
a
gn′

a

) (4)

where W [Hz] denotes the available bandwidth for the communication be-
tween the UAV and the users, I0 [dBm/Hz] represents the power spectral
density of zero-mean Additive White Gaussian Noise (AWGN), pna [W] and
gna are the user’s transmission power and channel gain in its communication
link with the UAV, respectively.

Each user na experiences a time overhead to offload its data to the UAV
and process them, while considering the UAV’s shared computing capacity
among all the users residing in the AoI. Thus, the user’s experienced latency
is derived as follows:
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Lna =
sna,jBna,j

Rna

+
Φnasna,jBna

[1−

∑
n′
a ̸=na

sn′
a,j′Bn′

a

BUAV
] · fUAV

(5)

the first term captures the data offloading time overhead and the second
term represents the data processing time overhead at the UAV. Also, BUAV

[bits] denotes the total amount of data that the UAV can process in parallel.
It is noted that the second term of Eq. 5 shows that the UAV allocates its
computing resources in a fair manner among the users, while accounting for
the amount of their offloaded data.

Focusing on the users’ experienced energy overhead due to the data of-
floading process to the UAV, its corresponding experienced energy consump-
tion is derived as follows.

Ena =
sna,jBna

Rna

pna (6)

Based on Eq. 5 and Eq. 6, each user’s normalized overhead is derived as
follows:

Ona =
Lna

T
+

Ena

ena

(7)

where T [sec] is the duration of a timeslot within the examined system and

e
(t)
na [Joules] denotes the user’s mobile device’s available energy.

Considering the user’s experienced latency and energy overhead, its utility
can be formulated as follows:

Una(sna,j, s−na,j) = be

sna,j∑
∀n′

a ̸=na

s
n′
a,j′
− ceOna (8)

where s−na,j = [s1,j, . . . , sna−1,j, sna+1,j . . . , sna,j] represents the offloading
strategies of all other users in the system, excluding the user na. The physi-
cal meaning of the user’s utility captures its satisfaction from offloading data
to a UAV-mounted MEC server, while also incurring costs in terms of time
and energy. Furthermore, the satisfaction and cost experienced by each user
are affected by the data offloading decisions made by other users within the
system. The parameters b and c, within the range [0, 1], adjust the weight
each user assigns to its satisfaction from processing its data at the UAV (the
first part of Eq. 8) against the cost associated with this choice (the second
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part of Eq. 8). Additionally, due to the sensitivity of the distributed system’s
stability to slight shifts in offloading strategies across numerous users, an ex-
ponential form is employed in Eq. 8 to effectively model the satisfaction-cost
balance and associated patterns.

Each user seeks to optimize its utility (Eq. 8) in order to balance the
benefits of offloading data to the UAV-assisted MEC server against the asso-
ciated overhead (Eq. 7). Therefore, the problem for each user is structured
as a utility maximization problem, and is formulated as follows:

max
sna,j∈Sna

Una(sna,j, s−na,j) = be

sna,j∑
∀n′

a ̸=na

s
n′
a,j′
− ceOna (9)

The optimization in Eq. 9 reveals the interdependencies in offloading
strategies among the users, leading to competitive behavior over the UAV-
mounted MEC server’s resources. Thus, this optimization problem is mod-
eled as a non-cooperative game G = {Na, {Sna}∀na∈Na , {Una}∀na∈Na}, where
Na indicates the users in AoI a, Sna is each user’s offloading strategy set, and
Una represents each user’s utility.

The solution to this game should identify a Pure Nash Equilibrium (PNE)
where each user optimizes its utility by choosing an optimal strategy s∗na,j.
If a PNE exists, no user benefits by unilaterally changing its chosen strategy
sna,j while others remain fixed. The PNE concept is formalized as follows.

Definition 1. (Pure Nash Equilibrium) A data offloading vector s∗ =
[s∗1,j, . . . , s

∗
Na,j

], s∗na,j ∈ Na is a PNE of the non-cooperative game G if for
every user na, the following holds: Una(s

∗
na,j, s

∗
−na,j) ≥ Una(sna,j, s

∗
−na,j), for

all sna,j ∈ Sna .

According to Definition 1, a PNE guarantees the stable system perfor-
mance of the interaction among the users and the UAV, and the users achieve
their maximum perceived utility at the PNE. If no PNE exists, then, the sys-
tem becomes unstable and the users cannot determine their optimal offload-
ing strategies. We apply the principles of S-modular games to demonstrate
that a PNE exists in the non-cooperative game G. Specifically, we show that
the non-cooperative game is submodular, meaning that as one user increases
its offloading to the UAV-mounted MEC server, the other users tend to re-
duce theirs, due to increasing competition. The submodular games inherently
have at least one PNE [27]. We formalize this analysis in the theorem below.
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Theorem 1. (Submodular Game) The non-cooperative game G =
{Na, {Sna}∀na∈Na , {Una}∀na∈Na} is submodular if, for all na ∈ Na, the fol-
lowing conditions are satisfied: (i) For each na ∈ Na, the strategy set Sna is a
compact subset of Euclidean space; (ii) Una is smooth within Sna and exhibits

non-increasing differences, i.e., ∂2Una

∂sna,j ·∂sn′
a,j′
≤ 0,∀na, n

′
a ∈ Na, na ̸= n′

a,∀j, j′.

Proof. To show that the non-cooperative game G is submodular, we assume
each user can offload any portion of its data to the UAV-MEC server. Thus,
the strategy space Sa = [0, 1] is continuous and compact, while Una is smooth.
Furthermore:

∂2Una

∂sna,j · ∂sn′
a,j

′
= b ·

 −1(∑
n′
a ̸=na

sn′
a

)2 +
−1(∑

n′
a ̸=na

sn′
a,j

′

)3 · sna,j

 · e sna∑
n′
a ̸=na

s
n′
a,j′

−ceOna ·

 Φna
·Bna

· Bn′a
BUAV[

1−
∑

n
′
a ̸=na

sn′
a,j′Bn′

a

BUAV

]2
· fUAV · T

 · (1 +Ona
) ≤ 0

(10)

Thus, the game is submodular.

Since the submodular games have a non-empty set of PNE points, we
have shown that the non-cooperative game G has at least one PNE s∗ =
[s∗1,j, . . . , s

∗
Na,j

].
Toward determining the PNE, we design a Best Response Dynamics

(BRD) algorithm, where the users iteratively adjust their strategies to con-
verge to the PNE. The best response strategy for each user is defined as
follows:

BRna(s−na,j) = sna,j = argmax
sna,j∈Sna

Una(sna,j, s−na,j) (11)

In summary, the asynchronous BRD algorithm, presented in Algorithm
1, determines a PNE for the non-cooperative game G. The algorithm’s com-
plexity is O(Na · Ite), where Ite is the number of iterations for convergence.
Specifically, the complexity for the part of the utility calculation is O(Na)
given the iterative nature of the algorithm over all the users Na residing in
an area a. Also, considering that the algorithm is iteratively repeated over
Ite iterations until it converges, the overall complexity is O(Na · Ite).
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Algorithm 1 Asynchronous BRD Algorithm

Require: Na, Rna , Bna , fUAV , BUAV , T , ena , Sna , ∀na ∈ Na

Ensure: Pure Nash Equilibrium: s∗

1: Initialization: ite = 0, Convergence = 0, s|ite=0

2: while Convergence == 0 do
3: ite = ite+ 1
4: for na = 1 to Na do
5: Each user na determines sna,j|ite

w.r.t. s−na,j|ite (Eq. 11) and receives U
(ite)
na

(
s∗na,j|ite, s

(t)
−na,j
|ite
)

6: end for
7: if s∗na,j|ite − s∗na,j|ite−1 <= 10−15 then
8: Convergence = 1
9: end if

10: end while

4. BRAVE-GREEDY

The UAV u, acts as a MEC server, which travels among the AoIs
a,∀a ∈ A, to collect the users’ data Ba. The problem is to determine the
optimal path of the UAV in order to collect the maximum amount of data,
thus, optimize the benefit of the UAV-MEC server, considering the energy
constraints of the UAV to perform the flight and process the data. We for-
mulate the above problem as an Integer Linear Programming (ILP) problem,
where δa,a′ is a binary variable, showing if the AoIs a, a′ belong to the UAV’s
path and the UAV moves from a to a′, i.e., δa,a′ = 1, while δa,a′ = 0, oth-
erwise. To manage the AoIs’ sequence, we introduce positional variables
ak ∈ A\{a0}, which indicate the order in which the AoIs are visited. We set
a0 as the starting AoI of the UAV’s path and ak < ak+1 denotes that AoI ak
is visited before ak+1. The ILP problem is formulated as follows:

max
∑

a∈A\{afinal}

∑
a′∈A\{a0}

Ba · δa,a′ (12)

s.t. δa,a′ ∈ {0, 1},∀a, a′ ∈ A (13)

∑
a′∈A\{a0}

δa0,a′ =
∑

a∈A\{afinal}

δa,afinal
= 1 (14)

∑
a∈A\{afinal}

∑
a′∈A\{a0}

wa,a′ · δa,a′ ≤ E (15)
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2 ≤ aa ≤ A, ∀a ∈ A\{a0} (16)

aa − aa′ + 1 ≤ (A− 1) · (1− δa,a′) (17)

The goal is to maximize the total amount of collected and processed data
from the users residing in each visited AoI considering the UAV’s resource
constraints, as captured in Eq. 12. Eq. 13 shows that the UAV will or will
not visit a path from an AoI a to an AoI a′. Eq. 14 ensures the path begins
at AoI a0 and ends at AoI afinal. Eq. 15 restricts the total energy cost of the
path to stay within the given UAV’s energy budget E . Finally, Eq. 16–17
are the Miller-Tucker-Zemlin (MTZ) inequalities, ensuring that no subpaths
occur and all selected AoIs are part of a single connected path [28].

The BRAVE-GREEDY Algorithm (Algorithm 2) prioritizes visiting the
AoIs with the highest available data to be offloaded by the users, while the
UAV stays within its energy availability constraints. Initially, all AoIs are
sorted in descending order based on their amount of data (step 4). The al-
gorithm proceeds iteratively (steps 5-14) where in each iteration, given the
current AoI ac and the remaining energy of the UAV Ec, it evaluates if any
AoI which still has data to offload to the UAV can be reached considering
the UAV’s energy availability (step 6). If such AoIs exist, the one charac-
terized by the maximum amount of data is selected, and the corresponding
information, such as the path, energy cost, amount of collected data so far,
remaining available energy of the UAV, and next current AoI, is updated
(steps 7-12). If multiple AoIs have the same amount of data, a random
choice is made. The process terminates either when all AoIs have offloaded
all their available data or when none of the remaining AoIs can be visited due
to the limited energy availability of the UAV or, alternatively, if the UAV
has already arrived at the final destination afinal (step 5). At this point, the
algorithm proceeds to the destination AoI afinal and returns the final path,
the remaining energy of the UAV, and the total amount of collected data
(steps 15-19). The algorithm has a time complexity of O(A2). Specifically,
the sorting process of the AoIs requires O(A · logA), while the worst case
scenario of the main iterative loop (steps 5-14) is O(A2), if the algorithm
traverses each AoI (worst case scenario). Thus, the overall time complexity
of the BRAVE-GREEDY algorithm is dominated by the main iterative loop
resulting in the overall complexity O(A2).
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Algorithm 2 BRAVE-GREEDY Algorithm

1: Input: G = (A, L), a0, afinal, E
2: Output: Path P from a0 to afinal, EP , BP

3: Initialization: Einitial
P = 0, Binitial

P = 0, A0 = A\{a0, afinal} set of AoIs
that have available data, ac = a0 current visited AoI, Ec = E current
energy availability

4: Sort the AoIs with available data with respect to their amount of data
Ba, ∀a ∈ A0 in decreasing order, with aamax = 1 denoting the AoI with
the largest amount of data

5: while (A0 ̸= ∅ && {a|w(n, ac) + w(ac, afinal) ≤ E} ≠ ∅ && ac ̸=
afinal) do

6: if aamax ∈ {a | w(ac, a) + w(ac, afinal) ≤ E} then
7: P = P ∪ {aamax}
8: EP = EP + w(ac, aamax)
9: BP = BP +B∗

aamax

10: E = E − w(ac, aamax)
11: Update Ba based on the amount of the users’ offloaded data and

update A0 if amax exhausted its available data
12: ac = aamax

13: end if
14: end while
15: EP = EP + w(ac, afinal)
16: P = P ∪ {afinal}
17: BP = BP +B∗

afinal

18: E = E − w(ac, afinal)
19: return EP , P, BP , E

5. Reinforcement Learning-based BRAVE

In this section, the path of the UAV is determined following a reinforce-
ment learning (RL) approach. The UAV acts as an RL agent. The Markov
Decision Process (MDP) is formulated to model the decision-making process
of the UAV in a dynamic environment, where the UAV must decide on the
next AoI to visit while considering both its energy constraints and the data
collection requirements. The key components of the MDP are as follows:

• State (st): The state represents the UAV’s current situation, which
includes the AoI where the UAV is currently located and the remaining
energy available for visiting other AoIs in the future. Thus, the state
captures the UAV’s position in the environment and its remaining en-
ergy, which directly influences its decision-making process.
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• Action (at): The action corresponds to the UAV’s decision at time
t regarding which AoI to visit next. The action space is discrete and
consists of a set of AoIs that the UAV can choose to visit. The UAV’s
decision is influenced by its energy constraints and the expected benefit
of visiting each AoI (i.e., the amount of data to be collected).

• Reward (rt): The reward is a numerical value that quantifies the
UAV’s experienced benefit by selecting a particular action. In this case,
the reward is based on the amount of data collected at the selected
AoI. The UAV receives a positive reward for collecting data, which
incentivizes it to prioritize AoIs with higher amounts of data. Thus, the
reward is designed to reflect the UAV’s objective, i.e., the maximization
of the amount of collected data from the field, while respecting energy
constraints.

• Policy: The policy is a mapping from the UAVs’ states to their cor-
responding actions, and it represents the UAV’s decision-making strat-
egy. The UAV’s policy π(st, at) defines the probability of selecting a
particular action given its current state. The policy is learned through
the reinforcement learning process, where the UAV iterates through
episodes, receives rewards, and adjusts its policy to maximize the cu-
mulative reward over time.

In this section, three alternative methods are analyzed. The first method,
BRAVE-PRO, follows a gradient bandit approach where a soft-max distri-
bution is applied. This distribution is proportional to the amount of data
collected at the selected Area of Interest (AoI) and scaled probabilistically
by the ratio Ba∑

a′∈A
(Ba′ )

, where Ba is the data available at AoI a. The second

method, BRAVE-EXPO, also employs a gradient bandit approach. However,

it uses an experienced benefit model, expressed as

exp( Ba∑
a′∈A

(Ba′ )
)

∑
a′′∈A

(exp(
Ba′′∑

a′∈A
(Ba′ )

))
. Finally,

the third method, Q-BRAVE, relies on a Q-Learning technique, where the
UAV selects an AoI based on the learned Q-values. An overview of the
BRAVE-PRO, BRAVE-EXPO, and Q-BRAVE is presented in Fig. 1

5.1. BRAVE-PRO

In BRAVE-PRO method, the UAV acts as an RL agent navigating
through the AoIs, which have available data to offload to the UAV, aiming
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Figure 1: Overview of the BRAVE-PRO, BRAVE-EXPO, and Q-BRAVE frameworks.

at maximizing the amount of collected data. A probabilistic policy governs
the action selection of the UAV, where the probability of moving from one
AoI to the next one is calculated as follows.

π(st, at = a) =
Ba∑

a′∈A0

Ba′
, (18)

This policy offers a straightforward approach for path selection. By nor-
malizing Ba relative to the total data available across all AoIs, this rule
ensures that higher data values directly influence the selection probability.
The BRAVE-PRO method is computationally simple, however, this method
tends to favor AoIs with the largest amount of available data and it reduces
the probability of visiting smaller but still viable alternatives. This bias can
result in suboptimal exploration (e.g., early termination of the UAV’s naviga-
tion among the AoIs), especially in heterogeneous environments with skewed
data distributions.
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5.2. BRAVE-EXPO

In this section, we propose an advanced reinforcement learning-based ap-
proach, BRAVE-EXPO, for the UAV’s optimal path planning. Unlike the
conventional methods, such as the BRAVE-PRO method, BRAVE-EXPO
leverages an exponential probability update mechanism to achieve a bal-
anced trade-off between the exploration and the exploitation. This approach
mitigates the biases that exist in the UAV’s probabilistic decision-making,
particularly in environments with highly skewed data distributions across the
available AoIs.

The BRAVE-EXPO algorithm introduces a probability update rule based
on a softmax-like function, defined as follows.

π(st, at = a) =

exp

(
Ba∑

a′∈A
Ba′

)
∑

a′′∈A
exp

(
Ba′′∑

a′∈A
Ba′

) (19)

The adoption of the softmax-like function ensures a smoother probability
distribution and reduces the dominance of AoIs with disproportionally large
data values. Therefore, the UAV is encouraged to explore other viable AoIs
with non-negligible data amounts, thus, the BRAVE-EXPO improves the
overall system efficiency and promotes the exploration. The exponential
reduces the influence of extreme values in Ba, consequently, it encourages
the UAV to perform more balanced decision-making by performing more
exploration. Moreover, by mitigating the over-reliance of the UAV on high-
value AoIs, BRAVE-EXPO enables the UAV to maximize its data collection
while at the same time maintaining an energy-efficient operation.

The complexity of the BRAVE-PRO and BRAVE-EXPO algorithms is
O(ITE · A), where ITE denotes the number of iterations that the algo-
rithms need to converge to the optimal path for the UAV. Specifically, the
complexity of the main loop (steps 7-17) is O(A) per iteration, as all the
internal calculations of complexity O(1) are performed for each AoI. The
algorithm is executed iteratively over ITE iterations, where this number de-
pends on the UAV’s energy level, thus, the overall complexity is O(ITE ·A).
The BRAVE-PRO and BRAVE-EXPO algorithms are jointly presented in

Algorithm 3.
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Algorithm 3 BRAVE-PRO/BRAVE-EXPO UAV Path Planning

1: Input: G = (A, L), a0, afinal, E
2: Output: Path P , Total Collected Data BP , Final Energy Ec
3: Initialization: A0 = A \ {a0}, ac = a0, Ec = E , P = {a0}, BP = 0
4: while (A0 ̸= ∅ && {a|w(n, ac) + w(ac, afinal) ≤ E} ≠ ∅ && ac ̸=

afinal) do
5: Compute probabilities π(st, at = a′) for all a′ ∈ A0

6: Select a′ using π(st, at)
7: if w(ac, a

′) ≤ Ec then
8: P = P ∪ {a′}
9: BP = BP +B∗

a′

10: Ba′ = Ba′ −B∗
a′

11: Update A0 if a′ exhausted its available data
12: Ec = Ec − w(ac, a

′)
13: ac = a′
14: else
15: A0 = A0 \ {a′}
16: end if
17: end while
18: P = P ∪ {afinal}
19: BP = BP +B∗

afinal

20: Ec = Ec − w(ac, afinal)
21: return P,BP , Ec
5.3. Q-BRAVE

In this section, we extend the BRAVE framework by introducing a Q-
Learning-based path planning approach, i.e., the Q-BRAVE framework. It is
noted that the BRAVE-PRO and BRAVE-EXPO frameworks employ prob-
abilistic policies for the action selection, while, the Q-BRAVE framework
leverages Q-learning, a model-free reinforcement learning algorithm, to de-
termine the optimal path for the UAV. Q-learning enables the UAV to make
decisions based on accumulated experience by learning an action-value func-
tion Q(st, at). From any given state st ∈ S, the UAV selects an action at ∈ A
to move to a new state, while obtaining a reward rt(st, at). A policy, repre-
sented as π(st) : S → A, maps the current state st to an appropriate action
at. In this context, we assume a deterministic policy where a specific ac-
tion is chosen based on the state. The agent refines its decision-making by
evaluating the effectiveness of actions through the Q-value function Q(st, at).
This value reflects the anticipated discounted total of future rewards when
performing action at in state st, under the assumption of following an op-
timal policy. The best action for any given state is the one that results in
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Algorithm 4 Q-BRAVE UAV Path Planning

1: Initialize Q(s, a)← 0 for all states s ∈ S and actions a ∈ A
2: Set learning rate α, discount factor γ
3: Set episodes, ϵ-greedy policy
4: for iteration = 1 to episodes do
5: Reset UAV to starting AoI a0 and G = (A, L)
6: while (A0 ̸= ∅ && {a|w(n, ac)+w(ac, afinal) ≤ E} ≠ ∅ && ac ̸=

afinal) do
7: Select action a′ using ϵ-greedy policy
8: Calculate reward rt(sc, a

′)
9: Update Q-value:

Q(sc, a
′)← (1− α) ·Q(sc, a

′) + α · [rt(sc, a′) + γ ·max
a′

Q(s′, a′)]

10: P = P ∪ {a′}
11: BP = BP +B∗

a′

12: Ba′ = Ba′ −B∗
a′

13: Update A0 if a′ exhausted its available data
14: Ec = Ec − w(ac, a

′)
15: ac = a′
16: end while
17: end for
18: return Optimal path and total collected data

the highest Q-value. When the RL agent is in state st, executes action at,
and moves to the subsequent state, the value Q(st, at) is adjusted iteratively
using the Bellman equation:

Q(st, at)← (1− α) ·Q(st, at) + α ·
[
rt(st, at) + γ ·max

a′
Q(s′t, a

′)
]

(20)

In Eq. 20, 0 < α ≤ 1 denotes the learning rate, while maxa′ Q(s′t, a
′) rep-

resents the highest possible reward obtainable from the subsequent state s′t.
The UAV starts at the source AoI a0 and selects its next move by following
the Q-table, specifically choosing the AoI a′ = argmaxa′ Q(s′, a′), where the
amount of data B∗

a′ is collected. This process continues until the RL agent
arrives at the destination afinal. The complexity of the Q-BRAVE algorithm
(Algorithm 4) is O(episodes · |S| ·A), where episodes is the maximum num-
ber of episodes that the Q-BRAVE algorithm is executed. Specifically, the
initialization phase (steps 1-3) has complexity O(|S| · A). Then, the algo-
rithm is executed over multiple episodes, following the for loop. The inner
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loop has an O(A) complexity for the action selection based on the ϵ-greedy
policy, while the reward calculation, Q-value update, state updates have all
complexity O(1). Thus, by combining the iterative process of the algorithm
and considering that the order of magnitude of the states is comparable to
the one of the states, the overall complexity is O(episodes · |S| · A).

6. BRAVE-MARL

In this section, we consider the general scenario, where multiple UAVs
u ∈ U serve the AoIs and they collaborate among each other to support the
search and rescue operation. To achieve this goal a Multi-Agent Reinforce-
ment Learning (MARL) framework is introduced, named BRAVE-MARL.
BRAVE-MARL extends Q-BRAVE into a multi-agent framework, structured
into two distinct phases. The autonomous exploration segment, each RL
agent independently follows a reward-oriented action strategy and updates
the Q-table. In the collaborative refinement segment, the RL agents
work together to adjust the reward and matrix entries, ensuring paths with
higher amounts of collected data are encoded. An overview of the BRAVE-
MARL is presented in Fig. 2.

6.1. Autonomous Exploration Segment

In this segment, the RL agents follow a reward-driven approach and up-
date the Q-table individually. Specifically, when a UAV hovers above an AoI,
it selects the next AoI to visit based on one of three options:

1. Greedy selection: The UAV/RL agent chooses the AoI offering the
highest immediate reward based on Eq. 21 following an ϵ-greedy policy.

a′ = argmaxa′∈A0∩F(r,Eu) Q(st, a
′) (21)

where A0 denotes the set of AoIs that still have data to offload to a
UAV, and F(r, Eu) is the set of feasible nodes within the agent’s budget
Eu.

2. Exploration: The RL agent selects the next AoI probabilistically based
on an ϵ-greedy policy.

3. Finalization: If no feasible AoIs exist to be visited, the RL agent ter-
minates at the destination afinal.

After transitioning from AoI a to AoI a′, the UAVs independently update
the Q-table according to Eq. 20.
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Figure 2: Overview of the BRAVE-MARL framework.

6.2. Collaborative Refinement Segment

In this phase, the UAVs communicate to update their collective Q-table
in order to improve their knowledge about the environment. Based on the
collaboratively updated Q-table, the UAVs enter the autonomous exploration
segment phase to choose the next AoI to be visited. The UAVs repeat the
autonomous exploration and the collaborative refinement segments until all
the UAVs have reached their terminal conditions, i.e., the AoIs have offloaded
all their data or no feasible AoIs can be visited due to energy constraints or
the UAV has reached afinal.

The BRAVE-MARL algorithm is presented in Algorithm 5. The com-
plexity of the BRAVE-MARL algorithm is O(episodes · |U|2 ·A). Specifically,
during the autonomous exploration segment phase, each UAV operates in-
dependently, selects actions, and updates its Q-table. For each UAV, this
process involves iterating over all possible actions and updating the Q-value
for each state-action pair. This results in a complexity of O(episodes · A).
Since the algorithm involves multiple UAVs, the overall complexity for this
segment is O(episodes · |U| · A). Then, during the collaborative refinement
segment phase, the UAVs exchange and refine their Q-tables. This involves
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communication between each pair of UAVs to update the collective Q-table,
which introduces a pairwise interaction complexity of O(|U|2). The refine-
ment of the Q-tables is dependent on the number of UAVs and the size
of the Q-table, resulting in a complexity of O(episodes · |U|2 · A). Thus, by
combining both segments and considering the number of episodes, the overall
complexity isO(episodes·|U|·A+episodes·|U|2·A) However, since the collabo-
rative refinement segment’s complexity scales quadratically with the number
of UAVs, the total complexity can be approximated as O(episodes · |U|2 ·A).

Summarizing the analysis provided in Sections 5 and 6, it is noted that
Section 5 introduces three single-agent reinforcement learning methods, i.e.,
(i) BRAVE-PRO: A gradient bandit approach using a soft-max distribution;
(ii) BRAVE-EXPO: An advanced version of BRAVE-PRO using an expo-
nential probability update mechanism; and (iii) Q-BRAVE: A Q-Learning
based approach for optimal path planning. Section 6 builds upon these foun-
dations to create BRAVE-MARL, i.e., a multi-agent reinforcement learning
framework. BRAVE-MARL extends Q-BRAVE to a multi-UAV scenario by
introducing the distinct phases of autonomous exploration and collaborative
refinement and incorporating inter-agent communication and collective Q-
table updates. BRAVE-MARL handles multiple agents simultaneously and
it combines individual learning with collaborative refinement, thus, balancing
the autonomy and teamwork among the UAVs. BRAVE-MARL algorithm
adapts Q-Learning to a multi-agent environment, which is a non-trivial ex-
tension.
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Algorithm 5 BRAVE-MARL Algorithm

1: Input: Set of UAVs U , Set of AoIs A0, UAV energy budgets Eu, episodes
2: Output: Path Pu, Total Collected Data BPu , Final Energy Eu
3: for each iteration ite = 1, 2, . . . , episodes do
4: Autonomous Exploration Segment:
5: for each UAV u ∈ U do
6: Initialize current state st for UAV u
7: while UAV u has feasible AoIs F(r, Eu) to visit do
8: Select the next AoI a′ based on:
9: (a) Greedy Selection: a′ = argmaxa′∈A0∩F(r,Eu) Q(st, a

′)
10: (b) Exploration: Select a′ probabilistically based on ϵ-greedy

policy
11: (c) Finalization: If no feasible AoIs exist, terminate at afinal
12: Transition from a to a′, and update the Q-table Q(st, a

′) using
Eq. 20

13: Update UAV state st ← st+1

14: end while
15: end for
16: Collaborative Refinement Segment:
17: for each UAV pair (u1, u2) ∈ U ,∀u1 ̸= u2 do
18: Exchange Q-tables Qu1 and Qu2

19: Update the collective Q-table by combining individual Q-tables con-
sidering the largest entries

20: end for
21: for each UAV u ∈ U do
22: Update individual Q-table Qu based on the collaboratively updated

Q-table
23: end for
24: Check Termination Conditions:
25: if all the UAVs have reached their terminal conditions, i.e., the AoIs

have offloaded all data or no feasible AoIs can be visited due to energy
constraints or the UAV has reached afinal then

26: Break the loop
27: end if
28: end for
29: return Pu, BPu , Eu, ∀u ∈ U

7. BRAVE System Simulation and Modeling

The simulation framework of the BRAVE framework was implemented us-
ing Python (3.10.14), leveraging its extensive libraries, such as scipy.minimize
(1.14.1) to simulate the submodular game described in Algorithm 1, Jax and
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Jaxlib (0.4.21) to execute and accelerate all necessary numerical operations
(state-of-the-art technology that takes advantage of the system’s GPU), con-
current.futures (Python multiprocessing library introduced in Python 3.2)
for Monte Carlo simulations, gymnasium (0.29.1) to simulate the RL envi-
ronment that the UAV interacts within each episode, and Matplotlib (3.9.2)
for result visualization. The choice of Python was driven by its flexibility,
scalability, and robust support for algorithm development and integration.

The network topology modeled in the simulation emulates a public safety
system consisting of one and multiple UAVs for the BRAVE-GREEDY,
BRAVE-PRO, BRAVE-EXPO, and BRAVE-MARL frameworks respectively.
The UAVs’ characteristics in terms of energy cost were captured in the sim-
ulation by providing them as inputs to the simulation, as they were derived
from the UAVs’ specification documentation that is available online. Pa-
rameters such as UAVs altitudes, AoIs positions, and user densities were
configured based on real-world benchmarks, referenced from the Emergency
Control Center of the City of Albuquerque, New Mexico, USA.

The proposed collaborative edge computing framework was implemented
using a multi-agent reinforcement learning algorithm. The model incorpo-
rates a Stackelberg game-based optimization approach for resource allocation
and task offloading decisions. MARL agents were designed to act as decision-
makers for the UAVs, optimizing task scheduling by considering system con-
straints, such as limited computational power, dynamic user demands, and
latency thresholds. The algorithm was initialized with hyperparameters de-
rived from extensive literature review and fine-tuned through iterative test-
ing.

To simulate realistic computing traffic patterns, synthetic task request
data were generated following a Poisson distribution in order to reflect vary-
ing user request rates. These tasks were characterized by computational
intensity and strict latency constraints, which represent realistic edge com-
puting requirements. The evaluation metrics of the BRAVE frameworks in-
cluded the UAVs’ consumed energy, collected data, number of visited AoIs,
execution time of the BRAVE frameworks, users’ time overhead and total
overhead, users’ amount of offloaded data, users’ devices’ consumed energy,
and users’ achieved data rate. To ensure reproducibility, all parameter set-
tings, and pseudocode for the algorithms are shared in the paper.
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Figure 3: Users’ total transmitted bits and distance from the AoI’s center.

8. Numerical Results

In this section, a detailed evaluation of the BRAVE framework and its
alternative models is presented to capture their pure operation as well as
their benefits and drawbacks with respect to supporting search and rescue
operations. Specifically, Section 8.1 analyzes the users’ optimal data offload-
ing based on the proposed game-theoretic approach. Section 8.2 provides
a thorough analysis of the different BRAVE frameworks’ alternative imple-
mentations by explaining their drawbacks and benefits with respect to the
public safety events. Section 8.3 presents the realistic scenario of the Boston
Marathon Bombing and how the BRAVE framework can support the search
and rescue operation. Finally, Section 8.4 compares the BRAVE-MARL
framework to alternative approaches that have been introduced in the liter-
ature to quantify its operational superiority. In the rest of the simulations,
the following parameters have been adopted, |A| = 10, Na = 10, mini-
mum distance between different AoIs is 100 [m], H = 30 [m], E = 19, 800
[KJ], W = 5 × 106 [Hz], fUAV = 2 × 109 [Hz], Φna ∈ [1, 2][KCPU−Cycles

bit
],

v = (1, 1, 1) [m/s], T = thover = 2 [sec], the maximum length of the path
is 50, each user’s distance from the center of the AoI is ranging [10, 77] [m],
Bna ∈ [3 × 105, 2 × 106] [bits], BUAV = 1 × 109 [bits], ξ = 0.1[ J ·s

CPU−cycles
s

],

I0 = 1 × 10−9, pna = 1 [W], ena = 29 [KJoules], b = 0.74 and c = 0.00043,
unless otherwise explicitly stated. Specifically, the hyperparameters of the
proposed BRAVE-MARL algorithm are learning rate α = 0.1, discount fac-
tor γ = 0.9, the exploration rate ϵ is initialized at 0.95 and decayed over time
using an exponential decay factor of 0.995 to encourage exploration during
early episodes and exploitation in later stages.
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Figure 4: Users’ data rate and channel gain.

Figure 5: Users’ time overhead and total overhead (logarithmic axes).

8.1. Optimal Data Offloading

In this section, the users’ optimal data offloading is presented, as discussed
in Section 3, following the game-theoretic approach in order to converge to
a Pure Nash Equilibrium. Specifically, Fig. 3a – 3b demonstrate the users’
total amount of data that they aim to offload to the UAVs in a representative
AoI, as well as their distance from the center of the AoI, as a function of the
user’s ID, respectively. Fig. 4a – 4b illustrate the users’ achieved data rate
(Eq. 4) and their corresponding channel gain in the communication link with
the AoI, as a function of the users’ ID, respectively.

Moreover, the proposed game-theoretic approach, i.e., Asynchronous
BRD (ABRD) Algorithm, has been compared with a reinforcement learn-
ing approach, i.e., Stochastic Learning Automata (SLA), under identical
conditions, including the volume of transmitted data, power consumption,
and solution cost, to demonstrate the benefits of the game-theoretic-based
data offloading. Under the SLA approach, each user na has its strategy
set Sna = {sna,min, . . . , sna,j, . . . , sna,max} where sna,j ∈ [0, 1], and selects
the strategy sna,j at iteration t with probability pna,j(t). The probabil-
ity of selecting the same action sna,j at time t + 1 is updated as follows:
pna,j(t+1) = pna,j(t)+α · r(t) · (1− pna,j(t)), where α ∈ (0, 1) is the learning
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Figure 6: Users’ amount of offloaded data and energy consumption.

Figure 7: Users’ utility at the PNE and convergence of the ABRD Algorithm.

rate, and r(t) ∈ [0, 1] is the reinforcement signal at time t. On the other
hand, the probability of selecting a different action sna,k (where k ̸= j) is
updated as: pna,k(t+ 1) = pna,k(t)− α · r(t) · pna,k(t). These updates ensure
that the probability vector pna(t) remains normalized, i.e.,

∑
j pna,j(t) = 1

for all t. The reinforcement signal r(t) is defined as the normalized value of

the utility function Una(sna,j, s−na,j), given by: r(t) =
Una (sna,j ,s−na,j)∑

sna,k∈Sna

Una (sna,k,s−na,k)
,

α = 0.7, and the SLA algorithm converges if the probability of an action of a
user exceeds 0.85. It is noted that each user acts as an RL agent, executing
the SLA algorithm autonomously at the beginning of each time slot, and the
algorithm converges if the same strategies are selected by all the users for a
consecutive period of time, i.e., 10 time slots. The following comparative re-
sults among the game-theoretic ABRD and the reinforcement learning-based
SLA algorithms are presented. Fig. 5a – 5b show the users’ experienced time
overhead (Eq. 5) and the users’ total overhead considering both the latency
and energy overhead, as expressed in Eq. 7, as a function of the users’ ID,
respectively. Fig. 6a – 6b depict the users’ optimal amount of offloaded
data at the Pure Nash Equilibrium point (Eq. 11) and their corresponding
consumed energy as expressed in Eq. 6, with respect to the users’ ID, respec-
tively. Also, Fig. 7a – 7b present the users’ utility as a function of the user’s
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ID (Eq. 8) and the error of ABRD and SLA algorithms as a function of the
iterations until they converge to the Pure Nash Equilibrium, respectively.

In the indicative AoI under consideration, we have sorted the user’s ID
based on the users’ total amount of data available to offload to the UAV,
as presented in Fig. 3a. The results reveal that the users who reside closer
to the UAV (Fig. 3b) and are characterized by a larger amount of data to
be offloaded to it (Fig. 3a) achieve better channel gain conditions (Fig. 4b)
resulting in an improved data rate (Fig. 4a), thus, experiencing a lower time
overhead (Fig. 5a), as well as overall overhead (Fig. 5b) considering both
the latency and energy overhead. Also, the results show that the users char-
acterized by favorable channel gain conditions achieve to offload the larger
amount of data (Fig. 6a) with a lower energy cost (Fig. 6b) resulting in
a higher achieved utility (Fig. 7a). Also, the results demonstrate the effi-
cient convergence of the Asynchronous Best Response Dynamics Algorithm,
which converges to the Pure Nash Equilibrium in less than 100 iterations,
which is translated to 0.9 seconds. This analysis confirms that the distributed
decision-making among the users in terms of deciding their optimal data of-
floading strategies operates in an optimal manner in terms of respecting the
users’ communication characteristics, as well as data offloading needs, by
converging to the Pure Nash Equilibrium, as presented in Section 3.

Moreover, focusing on the comparative evaluation of the game-theoretic
ABRD and the reinforcement learning-based SLA algorithms, the results re-
veal that ABRD minimizes the overall overhead (Fig. 5b), thus, it makes
the data offloading process more scalable and efficient for large-scale sys-
tems with multiple users compared to the SLA algorithm. This outcome is
achieved given that ABRD determines the PNE and optimizes the resource
allocation and task offloading more effectively, thus, it reduces the energy
consumption (Fig. 6b), while it optimizes the data offloading considering
the users’ data availability and priority to offload data to the UAV in order
to optimize the UAV’s data collection process (Fig. 6a). Based on these
observations, the users achieve a higher utility through the data offloading
process (Fig. 7a). Also, the results reveal that the SLA algorithm suffers
from long convergence time compared to the ABRD which converges fast to
the PNE (Fig. 7b).

8.2. BRAVE Frameworks’ Operation and Performance

In this section, the pure operation and performance of the BRAVE frame-
work is introduced by providing a comparative evaluation among the differ-
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Figure 8: UAV’s consumed energy and amount of collected data, for the four BRAVE
models.

Figure 9: Number of visited AoIs and Efficiency BP ·|P |
EP

of BRAVE models.

ent BRAVE models, i.e., BRAVE-GREEDY, BRAVE-PRO, BRAVE-EXPO,
and Q-BRAVE, and other single-agent reinforcement learning approaches,
i.e., SARSA algorithm [29, 30], that have been introduced in the literature
to perform the UAV’s path planning. Fig. 8a–9a and Fig. 9b present the
UAV’s consumed energy, amount of collected data, number of visited AoIs,
and the efficiency parameter, defined as BP ·|P |

EP
for the four BRAVE models

and the SARSA algorithm, respectively. It is noted that a Monte Carlo anal-
ysis is performed with 500 executions of each experiment, and the SARSA
algorithm adopts the same hyperparameters as the four BRAVE algorithms
for fairness in the comparison.

The results show that the Q-BRAVE model outperforms the rest of the
models by collecting the largest amount of data, visiting the largest num-
ber of AoIs, while consuming a large amount of energy. The overall ben-
efit of the Q-BRAVE model is reflected in the efficiency parameter, show-
ing that the Q-BRAVE model achieves approximately 260%, 250%, and
230% improved efficiency compared to the BRAVE-PRO, BRAVE-EXPO,
and BRAVE-GREEDY models, respectively. The superior performance of

28



the Q-BRAVE model stems from the intelligence of the Q-learning algorithm
that enables the UAV to avoid the destination AoI afinal before exhaust-
ing its available energy in order to continue supporting the data collection
and processing in the field. In contrast, the rest of the models, either select
greedily (BRAVE-GREEDY) or probabilistically an AoI (BRAVE-PRO and
BRAVE-EXPO) based on the AoI’s available data to be collected and pro-
cessed, thus, the destination AoI has a higher probability to be visited, even
before the UAV’s energy is not exhausted. Therefore, we observe that even
though under the Q- BRAVE model the UAV’s consumed energy is higher
compared to the rest of the models, and the benefit provided in the search
and rescue mission is quite higher, as reflected by the efficiency metric (Fig.
9b).

Focusing on the comparison of Q-BRAVE compared to SARSA, the re-
sults reveal that the Q-BRAVE algorithm outperforms SARSA by 62.36%,
5.83%, and 71.69% regarding the amount of collected data, number of vis-
ited nodes, and efficiency, respectively, while consuming very similar energy
to perform the data collection process. It is noted that even both algorithms
are characterized as single-agent reinforcement learning algorithms aiming
at determining the UAV’s optimal path plan, SARSA is an on-policy RL
algorithm versus Q-BRAVE, which is an off-policy RL algorithm. This fun-
damental difference, SARSA tends to be more risk-averse because it updates
its value function based on the actual actions taken, including the exploratory
actions that can lead to penalties, i.e., high energy consumption or low data
collection. Thus, SARSA converges to inefficient paths in terms of both vis-
iting a smaller number of AoIs (Fig. 9a), collecting a smaller amount of
data (Fig. 8b), and resulting in a substantially lower efficiency (Fig. 9b)
compared to the Q-BRAVE, even though it enforces the UAV to consume a
similar amount of energy compared to the Q-BRAVE algorithm (Fig. 8a).

8.3. Realistic Public Safety Scenario enabled by the BRAVE Framework

In this section, a realistic scenario of applying the BRAVE framework is
presented. Specifically, the Boston Marathon Bombing public safety event
is considered and the Q-BRAVE model is applied, given its superiority com-
pared to the other models in terms of efficiency, as presented in the previous
section. Focusing on the Boston Marathon bombing on April 15, 2013, six
AoIs were involved: 1) Central Square, 2) Massachusetts Institute of Tech-
nology (MIT) campus, 3) 3rd Street, Cambridge, 4) Memorial Drive, 5) The
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Figure 10: Q-BRAVE model applied in the Boston Marathon Bombing.

intersection of Brighton Avenue and Commonwealth Avenue, and 6) Water-
town. The suspects’ residence was located in AoI 3, however, the suspects
were on the move in a hijacked SUV, making AoIs 1 and 2 more critical.
The suspects were seen in AoI 1 around 10 PM on April 18, prompting an
increased law enforcement presence in the area. Just 30 minutes later, a po-
lice officer was shot at AoI 2, escalating its importance. Another 30 minutes
after that, the owner of the hijacked car was released in AoI 4, further raising
the urgency of this area. As a result of these events, AoIs 1, 2, and 4 were
considered more critical, and thus, a higher volume of data collection from
these locations was needed, as presented in Fig. 10. Although AoI 5 was
along the suspects’ escape route toward Watertown, less data was gathered
from this area. The final suspect was captured in AoI 6, which served as the
UAV’s final destination in this case study. The embedded table in Fig. 10
demonstrates the UAV’s path planning derived from the Q-BRAVE model,
which fully aligns with the need to collect and process data, to support the
Boston Marathon Bombing public safety event and the rescue mission of the
Emergency Control Center.

8.4. BRAVE-MARL and Comparative Evaluation

In this section, our analysis is focused on the multi UAV scenario where
the BRAVE-MARL algorithm is applied. Specifically, we consider 3 UAVs
and the total number of 10 AoIs that have available data to upload to the
UAVs. The BRAVE-MARL algorithm is compared to the following sce-
narios: (i) Independent Learning (IL): each UAV independently learns its
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Q-table in order to decide its optimal path, (ii-iii) the previous scenario
with double (Double Extended Training – DET) and triple (Triple Extended
Training – TET) sets of episodes for training the learning algorithm; (iv)
BRAVE-GREEDY, and (v) Dijkstra, where each UAV determines sequen-
tially its optimal path to collect data from the AoIs. To the best of our
knowledge, there are no existing approaches in the current state-of-the-art
dealing with the RL-based multi-agent path planning in a swarm of UAVs,
where the UAVs cooperate among each other, and this is the fundamen-
tal contribution of our research work. Focusing on the comparison of the
BRAVE framework to existing RL-based path planning approaches, the IL,
DET, and TET algorithms are considered for the comparison. On the other
hand, focusing on comparing the BRAVE framework to non-RL multi-agent
path planning approaches, the Dijkstra’s algorithm is adopted, where the
cost of each link among two AoIs is the equal-weight linear combination of
the distance cost and the normalized inverse of the amount of collected data
from the destination-AoI. Also, the comparison of the BRAVE framework
to non-RL single-agent approaches is demonstrated through the comparison
to the BRAVE-GREEDY algorithm. Fig. 11a – 11e present the UAVs’
total consumed energy, amount of collected data, number of visited AoIs,
efficiency, and execution time of the algorithms for all the comparative sce-
narios, respectively. It is noted that a Monte Carlo analysis is followed for
500 executions of the experiments.

The results demonstrate that the BRAVE-MARL model outperforms the
comparative scenarios by collecting a greater volume of data compared to
the IL and DET scenarios (Fig. 11b) and visiting more AoIs compared to all
the comparative scenarios (Fig. 11c), albeit with higher energy consumption
(Fig. 11a). However, it delivers significantly enhanced efficiency (Fig. 11d)
while drastically reducing the algorithm’s execution time (Fig. 11e). In con-
trast, the Independent Learning approach delivers the poorest performance
in terms of data collection efficiency. Even with extended training (double
and triple episodes), the improvements in efficiency come at the prohibitive
cost of significantly increased execution time, especially as the number of
episodes increases. Focusing on the BRAVE-GREEDY algorithm, while sim-
pler with respect to its design, it achieves low efficiency given that it falls
short compared to BRAVE-MARL in terms of the number of visited AoIs
and the overall data collection volume due to the fact that the UAVs do not
cooperate among each other, leading to overlaps and/or inefficiencies in the
path planning process. For similar reasons, the Dijkstra’s algorithm results
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in very low amount of collected data, by consuming also a small amount of
energy due to the fact that it visits very few AoIs, resulting in a very low ef-
ficiency compared to the proposed BRAVE-MARL framework. These results
quantify the superiority of the BRAVE-MARL algorithm, which leverages
the UAVs’ cooperation for optimal path planning, achieving the highest effi-
ciency in data collection during public safety events.

Figure 11: UAVs’ total consumed energy, amount of collected data, number of visited
AoIs, efficiency, and execution time of the algorithms for all the comparative scenarios.
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The BRAVE framework jointly addresses the problem of optimal users’
data offloading and UAV path planning in disaster-stricken areas. The data
offloading process focuses on optimizing users’ utility by balancing satisfac-
tion and costs related to latency and energy consumption. On the other hand,
the UAVs’ path planning prioritizes the spatial and temporal efficiency in or-
der to ensure that the UAVs visit the AoIs effectively while considering their
resource constraints and the dynamic environmental factors. By treating
these processes separately, we can design specialized algorithms that focus
on the unique requirements of each level without imposing undue complexity
on a single monolithic framework. Also, this approach makes the overall de-
sign more modular and the overall system becomes more scalable and adapt-
able to varying operational scenarios. Considering the outcome of the users’
optimal data offloading, the UAVs decide the future AoIs to be visited by
accounting for the data availability in each AoI. The current design employs
advanced game-theoretic principles, including the use of submodular games
for data offloading, to ensure convergence to a stable Pure Nash Equilibrium.
Focusing on the UAVs’ path planning, the reinforcement learning techniques
explore a broad solution space during the exploration phase to mitigate the
risk of local optima.

9. Conclusions

In conclusion, this paper introduces the BRAVE framework as a compre-
hensive solution for leveraging UAVs as mobile MEC servers in public safety
environments and addressing critical challenges in energy consumption, path
planning, and data offloading. By accurately modeling the UAVs’ energy con-
sumption and incorporating the users’ QoS requirements, the BRAVE frame-
work ensures the efficient support for disaster-stricken areas. The BRAVE
framework’s two-level decision-making mechanism integrates a submodular
game for the optimal users’ data offloading and a reinforcement learning-
based approach for the UAVs’ path optimization. Extending to a collabo-
rative multi-UAV setting, the BRAVE-MARL mechanism demonstrates the
benefits of cooperative reinforcement learning in terms of maximizing the
data collection and processing support while meeting the UAVs’ energy con-
straints. Extensive simulation-based evaluations validate the framework’s
adaptability and effectiveness and offer practical insights for the Emergency
Control Centers to tailor the solution to diverse public safety scenarios.
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