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Abstract—Personalized device-level energy consumption rec-
ommendations towards energy efficiency can have a notable
impact both on electricity bills and on the overall energy supply-
demand balance. End-user behavior regarding device activation
is usually unknown a priori, thus giving rise to a highly dynamic
environment. Hence, Reinforcement Learning (RL) can be uti-
lized for device scheduling and consumption recommendations
since it constitutes an Artificial Intelligence (AI) framework that
learns a control policy in a dynamic environment through trying
actions and observing incurred rewards. However, existing works
on energy consumption recommendations do not explicitly take
into account human feedback and preferences regarding the
issued recommendations, and they train a single RL agent per
device, hence missing the human behavior interdependencies in
using different devices. In addition, a flexible open-source RL
environment model that integrates user behavior in a Markov
Decision Process (MDP) model is missing. In this paper, we
propose an MDP-driven RL framework for energy efficiency
recommendations that jointly learns the user’s behavior for
multiple devices. The proposed model is wrapped as an open-
source customizable Gymnasium environment, named EMS-env,
for multi-device energy efficiency recommendations. EMS-env can
simulate different types of consumer behavior profiles based on
the MDP model and supports different device types as well as user
feedback. Validation experiments demonstrate the framework’s
merits and hyperparameters for diverse use cases in terms of
user simulation models and RL training policies, resulting in
decreased energy costs while maintaining end-user satisfaction.

I. INTRODUCTION

Consumers play a critical role in determining grid demand
load and patterns, while buildings are responsible for roughly
one-third of the total energy consumption, with residential
buildings contributing to 22% of the global energy demand
[1]. Hence, engaging residential consumers towards energy
efficiency through appropriate recommendations is crucial for
the overall energy transition [2]. The use of device scheduling
recommendations as an implicit means of minimizing energy
costs based on parameters such as grid energy prices and
user preferences, can have a positive impact on the energy
consumption of a building. In addition, incorporating con-
sumer feedback is crucial for such systems to retrain their
algorithms and make more relevant recommendations without
disturbing end users, hence shaping demand patterns towards
energy efficiency [3].

However, most existing approaches for device scheduling
in smart buildings do not take into account end-user feedback
and only focus on finding and recommending a near-optimal

schedule, regardless of whether the occupants will follow it or
not. Such methods may lead to consumer fatigue and limited
response in accepting recommendations. In addition, even in
works where some form of user feedback is incorporated into
the recommendation mechanism, a separate agent is trained
for each device, hence missing the underlying correlations of
consumer behavior when interacting with multiple devices. For
example, turning on the boiler in a household can be directly
and causally related to the operation of a dehumidifier since
the occupants may jointly use these two devices for showering.
Hence, capturing such device use interdependencies is needed.

Moreover, existing works mostly use different proprietary
experimental methodologies to evaluate the performance of
the proposed scheduling and recommendation modules, with
different simulation setups and data, while open-source imple-
mentations of such environments do not exist. Thus, the need
for a fully customizable open-source environment for energy
efficiency recommendations for multiple devices in residential
environments is prominent.

In this work, a Reinforcement Learning (RL) approach is
proposed that integrates an MDP which models transition
probabilities between different device states based on the rec-
ommended actions. The framework is wrapped as a customiz-
able open-source1 Gymnasium environment, named EMS-env.
The proposed RL model allows researchers to customize the
simulated consumer behavior in terms of recommendation
acceptance at a device level, supporting both intermittent and
uninterruptible devices. Intermittent devices can be turned on
and off as needed while uninterruptible ones should stay on
for a set time once activated. Namely, the number and power
consumption of different device types can be customized
when EMS-env is initialized, along with the energy price
signals, discomfort parameters in the reward function, and
system transition probabilities. A high-level representation of
the proposed RL pipeline is shown in Fig.1. Overall, the
contributions of this work are the following:

• We devise an MDP model for user recommendation
acceptance, which can capture different types of building
occupant behavior by adjusting the underlying transition
probabilities respectively.

• We propose a framework that gives the agents the abil-
ity to handle multiple devices simultaneously, including

1GitHub repository: https://github.com/SpirosChadoulos/EMS-env
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Fig. 1: EMS-env high-level RL pipeline.

intermittent and uninterruptible devices, i.e. devices that
can be activated intermittently and devices that should
run for a specific set of time slots respectively.

• We wrap the proposed RL model as an open-source
Gymnasium environment for smart homes and buildings,
offering full customizability at a device level.

• We conduct a set of experiments to demonstrate how
EMS-env can be utilized effectively, increasing the energy
efficiency of a building, using different types of user
profiles and environment parameters.

The rest of the paper is organized as follows: In Section II,
the related work is presented, and the contributions of EMS-
env compared to the literature are discussed. In Section III,
the RL model is presented. In Section IV, the functionalities
offered by the environment are demonstrated through data
experiments, and in Section V, conclusions are drawn.

II. RELATED WORK

Reinforcement Learning (RL) is widely used for recommen-
dations and asset control with the goal of residential energy
efficiency from different perspectives in terms of feedback.

A. Approaches without user feedback

In [4], a deep RL approach is proposed to solve the problem
of online scheduling of energy sources both at building and
aggregated level. The agent makes multiple actions at each
time-step related to switching ON/OFF events of 3 types
of electrical devices: “time-scaling” loads (e.g. AC), “time-
shifting” loads (e.g. dishwasher), and both “time-scaling” and
“time-shifting” loads (e.g. EV). In [5], a multi-agent RL
solution for residential energy management is proposed. A
Q-learning approach with 4 agents is adopted for different
devices to minimize energy costs. In [6], an RL environment
for demand response in office spaces is proposed. The goal of
the RL agent in this case is to offer points to office workers
to incentivize them to shift their energy consumption to times
of the day when the energy prices are lower. In [7] an RL
environment is proposed for automated control of the Heating,
Ventilation, and Air Conditioning (HVAC) system within a
building based on heat transfer and weather conditions. It is
evident that future research directions should include actual

human feedback which RL agents can use in the learning
process [3].

B. Approaches with user feedback

In [8] and [9], deep RL is utilized to develop a RecSys
for buildings that proposes energy-saving actions, such as
thermostat setpoint changes, reductions in heating and lighting
in a specific area of the building, and recommendations for
occupants to move to a different area of the building. The
system also co-optimizes user comfort and air quality within
the building. In [10], a residential energy recommendation
system that utilizes deep RL along with occupant feedback
and activities is designed and validated, by training a separate
agent for each device. Specifically, different types of labeled
human activities are integrated into the environment state, such
as “cooking”, “having breakfast”, “sleeping”, etc., along with
electricity prices, device status, device activation duration, and
EV-related parameters.

Our proposed RL model differs from existing works since
it incorporates human feedback in the form of a fully cus-
tomizable MDP user behavior simulation framework. It also
provides recommendations for multiple intermittent and unin-
terruptible devices simultaneously, capturing the correlations
of user behavior patterns when operating different devices
by utilizing a joint action space and a combined reward
function that considers all device types. In a nutshell, EMS-
env builds on prior works to offer a novel energy efficiency
recommendations RL environment for smart homes and build-
ings, incorporating human feedback, different types of users,
different types of devices, and multi-device recommendations.

III. ENVIRONMENT MODEL

The overall goal of the EMS-env framework is to make
an energy efficiency recommendation for each device at each
time slot, so as to minimize the energy consumption cost for
the building while preserving occupant satisfaction without
causing fatigue to them. Time is divided into time slots t ∈
{1, . . . , T} and κ is the duration of a time slot in hours. EMS-
env handles multiple devices simultaneously, with P d denoting
the mean power consumption of device d ∈ {1, . . . , D} in
kW (when activated), and ϕd

t standing for the status of device
d at time slot t (1 for ON, and 0 for OFF). The proposed
environment supports two types of devices:
(a) Intermittent devices: Most household and building de-

vices fall under this category, meaning that they can be
activated or deactivated intermittently. Examples of in-
termittent devices include lights, Air Conditioners (ACs),
fans, ventilation systems, and dehumidifiers.

(b) Uninterruptible devices: These devices should stay ON
for a specific number of time slots when they are activated
(e.g. washing machines). The usage duration (in hours)
of an uninterruptible device d is ld ∈ R+. Also, the usage
countdown ud

t ∈ [0, ld] represents the residual time for an
uninterruptible device after it is activated.

The total number of devices in the building or household is
D = D̂ + D̃, where D̂ is the number of intermittent devices
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and D̃ is the number of uninterruptible devices. The envi-
ronment includes the non-stationary price evolution process
{p1, . . . , pt, . . . , pT }, from the electricity utility company for
each time slot t. The agent can be trained and deployed within
the household to preserve user privacy since device energy
consumption data do not leave the house premises.

A. State

The state St at time slot t includes:
• The time (hour) at time slot t: ht

• The energy consumption of device d ∈ {1, . . . , D} at
time slot t: P d

t = κP dϕd
t

• The energy price from the retailer at time slot t: pt
• The usage countdown ud

t for each uninterruptible device.
Thus, the state St at time slot t is: St = (P 1

t , . . . , P
D
t )∪ht ∪

pt ∪ (u1
t , . . . , u

D̃
t ). The state is fully observable, i.e. the RL

agent has full access to the state parameters. Hence, the agent
can utilize the state parameters to make actions in the form of
recommendations.

B. Action

Based on the observed state, the agent takes an action in the
form of an energy efficiency recommendation regarding the ac-
tivity status of each device. In other words, the agent’s action is
a D-dimensional binary vector representing the recommended
state for D devices. Hence, the agent’s action At at time slot
t is defined as: At = (A1

t , . . . , A
d
t , . . . , A

D
t ) where Ad

t is the
recommended action regarding device d ∈ {1, . . . , D} for time
slot t. Ad

t is 1 if device d is recommended to be ON at time
t, and 0 if it is recommended to be OFF. This holds both for
intermittent and uninterruptible devices.

C. System transition probability model

An RL agent requires a significant volume of data, i.e.
interactions with the environment, to learn a policy. However,
in the case of energy efficiency recommendations, it is not
always feasible to train the RL agent in an online manner from
scratch with real feedback from building occupants. For that
reason, we define a user behavior simulation module that can
represent different types of users with a device state transition
probability model. As presented in Fig. 2, the MDP for each
device is defined by the states S = {s1, s2}, where s1 and s2
represent the device being ON or OFF respectively (the device
index d is not included for simplicity).

For each device (the device index is dropped again for
simplicity), the initial formulation of the action space includes
three different actions, A′ = {a1, a2, a3} representing the
agent’s recommendation to turn the device ON, turn the device
OFF, or to do nothing respectively. The transition probabilities
are derived from user responses based on the current device
state and the agent’s recommendation: ω = P (s1|s1, a3),
p = P (s2|s1, a2), θ = P (s2|s2, a3), q = P (s1|s2, a1). To
make the MDP model simpler, the action space presented
in Fig. 2 can be transformed into a binary action space
A = {a1, a2} where the only actions are the recommendations
to turn the device ON or OFF respectively. Action a3 can

Fig. 2: Device state transition probability model

be replaced using actions a1 and a2 as follows: a3 = a1
when s = s1, and a3 = a2 when s = s2. Namely, when the
current state of the device is ON (s = s1), a recommendation
to turn the device ON (a1) is the same as an action of no
recommendation (a3) since the agent’s intention is to remain
in the same state in both cases. The same is the case when
the current state of the device is OFF (s = s2), since a
recommendation to turn the device OFF (a2) is the same as
an action of no recommendation (a3).

A binary action space A = {a1, a2} for each device is
adopted in the proposed environment since the reduced action
space can improve the RL training complexity, while keeping
the formulation simple. In terms of user experience, when the
agent offers a recommendation that is the same as the current
state, e.g. turn a device ON when it is already ON, the front-
end of the system will refrain from notifying the end users
to avoid spamming, especially when the recommendations
frequency is high.

D. Reward

Based on the selected action At, the agent receives a reward
and tries to maximize the average reward throughout episodes.
The negative energy cost is the main parameter of the reward
function to make the agent select actions that maximize total
monetary gains (or minimize total costs). The cost for time
slot t is defined as: Ct = pt

∑D
d=1 P

d
t , with: Ct = Ĉt + C̃t,

Ĉt = pt
∑D̂

d=1 P
d
t , and C̃t = pt

∑D̃
d=1 P

d
t , where Ĉt and C̃t

are the intermittent and uninterruptible device costs respec-
tively. In addition, human feedback regarding recommendation
acceptance is incorporated into the reward model to make the
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agent select actions that the user has a high probability of
accepting. The total reward for time slot t, Rt, consists of
two sub-rewards R̂t and R̃t for intermittent and uninterruptible
devices respectively. A variation of the reward model proposed
in [10] is integrated and adapted to the EMS-env setting.

1) Intermittent devices reward: The intermittent devices
reward for time slot t is:

R̂t = −Ĉt −
D̂∑

d=1

fd
t δd (1)

where fd
t =

{
1 if ϕd

t ̸= Ad
t

0 if ϕd
t = Ad

t

is the user feedback and δd ∈

R+ is a cost coefficient that represents the user’s discomfort
for device d. In EMS-env, δd is a hyperparameter that can be
modified according to the target household or building.

2) Uninterruptible devices reward: The uninterruptible de-
vice reward R̃t is defined as:

R̃t =

D̃∑
d=1

δ̃d (2)

when ϕd
t−1 = 1, Ad

t = 0 and ud
t > 0, otherwise: R̃t = −C̃t −∑D̃

d=1 f
d
t δd, where δ̃d is the uninterruptible device deactivation

discomfort penalty. This parameter is utilized to punish the
agent when its action is to turn off an uninterruptible device
while there is still time left in the device’s usage countdown.
For example, turning a washing machine off while the washing
cycle is ongoing. Hence, the uninterruptible discomfort δ̃d gets
large values depending on the respective device and use case.
The total reward for time slot t when both intermittent and
uninterruptible devices are integrated is: Rt = R̂t + R̃t.

In [10], the formulation of a similar problem using the
δd parameters was introduced, while in our work we adapt
it by introducing a joint reward function with sub-rewards
for intermittent and uninterruptible devices using δd and the
δ̃d penalty respectively, along with the proposed device state
MDP model for different user behavior profiles. In practice,
the values of δd and δ̃d can be determined via manual user
preferences.

IV. DEMONSTRATION EXPERIMENTS

The proposed EMS-env environment is offered as an open-
source one while it also utilizes state-of-the-art open-source
libraries. It is developed using Python 3.10 and Gymnasium
[11], an RL framework for working with existing environ-
ments, as well as for creating customized ones. Gymnasium
is based on OpenAI’s Gym library [12], essentially being
a fork of Gym. EMS-env is developed using the offered
custom environment definition capabilities of Gymnasium, by
implementing the required probability transition functions, as
well as the action-observation spaces and rewards, as modeled
in Section III. In addition, Ray [13], RLlib [14], and Tune [15]
are utilized for parallel processing with popular RL algorithms.
To demonstrate the applicability of the proposed RL model
and the customizability of the EMS-env environment, a set of

simulation experiments with different setups are conducted,
including different reward parameters, user types, and baseline
RL algorithms.

A. Environment configurations

1) Device setup: The proposed environment is fully cus-
tomizable in terms of device setup since it can support different
combinations of intermittent and uninterruptible devices, with
specific power consumption and usage duration values pro-
vided either when the environment is initialized or in an online
manner in cases where real energy meters are utilized. In order
to demonstrate the capabilities of EMS-env, we initialize the
environment using the following devices (9 in total):
(a) Intermittent devices: two Air Conditioners (ACs) with a

power consumption of 1 kW and 2.5 kW respectively,
two 70W ceiling fans, one 3kW boiler, and one 70W
dehumidifier.

(b) Uninterruptible devices: one 1.3 kW dishwasher with a
usage duration of 2.5 hours, one 0.5 kW washing machine
with a usage duration of 1 hour, and one 2.4 kW clothes
dryer with a usage duration of 30 minutes.

All the power consumption values are based on realistic data
from residential devices. An episode horizon of 7 days is
adopted, along with a time step duration of 0.5 hours (30
minutes), with both parameters being fully configurable at the
initialization stage of the environment.

TABLE I: User types of the experiments for each device.

ωd pd θd qd

Receptive 0.9 0.9 0.9 0.9
Neutral ∼U(0.4, 0.6) ∼U(0.4, 0.6) ∼U(0.4, 0.6) ∼U(0.4, 0.6)

Resistant 0.1 0.1 0.1 0.1
Frugal 0.2 0.8 0.9 0.2

2) User types: EMS-env can support different types of user
behaviors, as well as an interface to an external system that
fetches real-time device state data from a building, depending
on the needs of each use case. EMS-env comes by default with
the device state transition probability MDP model described
in section III-C, which can be fully modified. By adjusting
the MDP transition probabilities when the environment is
initialized, EMS-env can simulate different types of consumer
behavior. The following user types are defined and utilized in
the demonstration experiments:
(a) Receptive: A user that in general is receptive and positive

towards the recommendations received from the agent.
All transition probabilities for all devices are set to 0.9,
meaning that for each device, there is a 90% probability
that the agent recommendation is accepted.

(b) Neutral: A user that is neutral toward the recommen-
dations. For each device, the transition probabilities are
generated using a random uniform distribution between
0.4 and 0.6, i.e ωd ∼ U(0.4, 0.6), pd ∼ U(0.4, 0.6), θd ∼
U(0.4, 0.6), qd ∼ U(0.4, 0.6).

(c) Resistant: A user that is resistant to the recommendations.
All transition probabilities are set to 0.1 in this case,
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Fig. 3: A2C and PPO reward comparison

hence for each device, there is a 10% probability that
the recommendation is accepted.

(d) Frugal: A user that is frugal with consumption and does
not want to waste excess energy. To simulate such a user,
the transition probabilities toward ON device states are
smaller compared to the probabilities toward OFF device
states. The specific probabilities used in the experiments
are: ωd = 0.2, pd = 0.8, θd = 0.9, qd = 0.2.

The user types above along with the respective transition
probabilities are presented in Table I.

3) Energy Prices: The offered environment is fully cus-
tomizable in terms of energy prices depending on the studied
region or even the specific building contract. By default,
the environment comes with a dataset consisting of real-
time energy price signals from the New York Independent
System Operator (NYISO) [16], which is also utilized in
the demonstration experiments. Specifically, real-time energy
price data (in cents per kWh) regarding the zone of Long
Island are used from January 2018 to December 2018.

4) Rewards: By default, EMS-env utilizes the reward mech-
anism described in Section III-D, which includes the hyperpa-
rameters δd and δ̃d, representing the device cost coefficient
for user discomfort and uninterruptible discomfort penalty
respectively. For the experiments, the following reward pa-
rameter values are tested: (a) δd = 100 and δ̃d = 1000, (b)
δd = 100 · P d and δ̃d = 1000 · P d. In the first case, we
assign equal δd and δ̃d values respectively for each device
d in the demonstration experiments. EMS-env can support a
more refined δd and δ̃d allocation with different values for
each device depending on the cost coefficient for discomfort.
For that reason, the second option is also demonstrated in
the experiments by including the device consumption P d

in the coefficients, meaning that in this case, devices with
greater consumption have a greater impact on the occupant
discomfort.

5) RL algorithms evaluated: The Advantage Actor-Critic
(A2C) [17] and Proximal Policy Optimization (PPO) [18]
algorithms are utilized and compared within the experiments.

(a) δd = 100 and δ̃d = 1000 (b) δd = 100·P d and δ̃d = 1000·P d

Fig. 4: User types reward comparison.

B. Results

In Fig. 3, A2C is compared with PPO in terms of mean
reward throughout 200 episodes, using a 30-minute time slot
duration (κ = 0.5) and an episode horizon of 7 days. In
addition, the environment is initialized using the Resistant user
behavior type in order to observe how the algorithms perform
in a use case where most of the recommendations get rejected.
In the first 10 episodes, both algorithms have performed a
lot of exploration, which has led to a steady decrease in
the achieved reward. Beyond the 10-15 episode mark, they
proceed to exploit their knowledge, which leads to a great
increase in reward. Overall, it is clear that A2C outperforms
PPO in terms of the mean reward achieved. The same is the
case for the other three user types, but the respective figures
are not included in the paper due to size constraints.

In Fig. 4, a set of experiments is conducted to compare the
episode reward mean achieved between the four user behavior
types described in Section IV-A2. Specifically, two subfigures
are presented, for two different δd and δ̃d setups. In both cases,
the agent (A2C) achieves the highest reward values with the
Receptive user type environment since the recommendations
made are accepted with a higher probability compared to the
other three user types. As expected, when interacting with
the Resistant user type environment, the agent achieves the
lowest reward since most of the recommendations get rejected.
The Frugal user type environment yields the second highest
reward, while the Neutral one results in the third highest
reward across episodes since the Neutral user type has a more
random behavior while the Frugal one is positive toward not
wasting energy hence leading to higher rewards.

Overall, the mean reward increases throughout episodes in
most cases for all the user behavior types tested, meaning
that training an agent with EMS-env leads to decreased energy
costs throughout time while the occupant behavior patterns are
captured. In addition, the comparative results between the four
different user behavior types, demonstrate the relevance and
applicability of the proposed MDP user transition probability
model.

In Fig. 5, we present an A2C agent trained on EMS-env for
200 episodes with an episode horizon of 7 days and 30-minute
time slots, using the Frugal user behavior type. Specifically,
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Fig. 5: Device load after recommendations compared to prices

after the training phase is completed, the agent is utilized for
inference within a single day (48 time slots). Fig. 5 shows
that the total device load after the agent’s recommendations is
low during time slots where the energy price is high and vice
versa. Hence, an agent trained using EMS-env can be applied
in similar cases to offer energy consumption recommendations
that follow user behavior and avoid high energy prices.

V. CONCLUSION

In this paper, we proposed an RL model and approach for
energy efficiency recommendations in multi-device setups that
captures consumer behavior and feedback with an MDP-based
user transition probability model. The model is customizable
in terms of intermittent and uninterruptible devices, rewards,
and energy prices, as well as user behavior types. The RL
framework is wrapped as an open-source Gymnasium RL
environment named EMS-env. Simulation experiments show
that RL agents trained on EMS-env can learn different types
of user behavior and achieve decreased energy costs over
time. The framework is presented for a single-building setup,
however, the methodology can be extended to an energy
community with multiple buildings to coordinate consumption
behavior toward overall energy efficiency which is part of our
future work. In addition, our future work includes deploying
EMS-env at a real building setup with multiple real users
providing feedback and using Reinforcement Learning with
Human Feedback (RLHF) approaches. RLHF can be utilized
to learn different reward parameters, such as the discomfort
values for each device and each user, which at the moment
are assigned manually. This manual process can be unclear
to consumers who might face difficulties accurately modeling
such parameters.
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