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Abstract—The rapid growth of data and computing needs
in the Internet of Medical Things (IoMT) necessitates efficient
mechanisms for optimizing the resource management in e-health
applications. This paper presents the NEMESIS framework,
which enables the users to determine their optimal Multi-Access
Edge Computing (MEC) server selection and data offloading
strategies by considering the reliability of the MEC servers
based on individual interactions and shared user experiences.
A comprehensive system model is introduced that defines the
users’ interactions, the data offloading processes, and the impact
of various IoMT devices, along with a novel utility function that
evaluates the tradeoffs in the MEC server selection and task
offloading. Additionally, a reliability model is proposed that in-
corporates the direct user interactions and their peers evaluations
of the MEC servers’ computing services, while a regret learning
mechanism is designed to optimize the users’ strategies under
varying information scenarios. The results demonstrate that
the NEMESIS framework operates efficiently in real-time and
outperforms state-of-the-art scheduling and offloading schemes
in terms of latency and energy consumption.

Index Terms—E-health, Regret Learning, Reliability, Edge
Computing, Internet of Medical Things.

I. INTRODUCTION

The Internet of Medical Things (IoMT) enables real-time
communication between individuals and smart medical devices
like fitness trackers and glucose monitors, enhancing accuracy
and response times while supporting proactive care. However,
the large volume of data generated requires high computing
power for real-time processing. Multi-access Edge Computing
(MEC) addresses this by placing servers closer to users, en-
abling faster data processing [1]. In this paper, the NEMESIS
framework is introduced to enable the users to determine their
optimal MEC servers selection and data offloading strategies
while accounting for the MEC servers’ reliability levels to
process the offloaded data. The reliability levels are assessed
based on both the individual user interactions and the col-
lective experiences shared among the users. A regret learning
approach is introduced to enable the users to determine their
optimal server selection and data offloading strategies under
scenarios of complete and incomplete information.

A. Related Work

Task offloading in edge computing has been recently ex-
plored in IoMT systems to support the substantial data process-
ing requirements stemming from the large number of IoMT
devices [2]. A task classification and scheduling scheme is

proposed in [3] considering a multi-layered edge computing
environment to optimize the latency for critical e-Health appli-
cations. A machine learning-based task offloading mechanism
is designed in [4] to address the computational demands
and energy consumption of the IoMT devices. A multi-agent
soft-critic-discrete scheme for task offloading and resource
allocation in IoMT is analyzed in [5] aiming at optimizing
the throughput and power consumption while adhering to
ultra-reliable and low-latency communication constraints using
Lyapunov optimization and the extreme value theory. A similar
method is proposed in [6] aiming at balancing the accuracy,
performance, and energy consumption through the task of-
floading process. A decentralized federated framework that
integrates MEC capabilities and software-defined networking
is discussed in [7] to optimize the clinical decision support
systems based on double deep Q-networks.

Additionally, the problem of task scheduling and MEC
server selection complements the task offloading optimization
to further improve the IoMT devices’ experienced latency
and energy consumption. A priority-based task scheduling
and resource allocation mechanism for MEC-enabled IoMT
systems is designed in [8] to optimize the task processing
time, bandwidth use, and response to emergency conditions
based on data from smart wearable devices. A Q-learning-
based algorithm is proposed in [9] to optimize the unmanned
aerial vehicles trajectories for real-time, energy-efficient, and
delay-sensitive transmission of patient vital signs in IoMT
systems. An adaptive resource allocation scheme for MEC-
assisted IoMT systems is introduced in [10] utilizing demand
forecasting and queuing theory to improve the resource utiliza-
tion. A multi-objective meta-heuristic method for scheduling
and offloading augmented reality applications in IoMT systems
is discussed in [11] in order to address the privacy protection,
mobility, latency, and energy consumption of the IoMT de-
vices. A low-complexity task scheduling iterative algorithm
is designed in [12] to minimize the average Peak Age of
Information in a real-time e-Health IoMT system.

B. Contributions and Outline

Despite the significant advancements in task offloading
and scheduling within MEC-assisted IoMT systems, most
existing studies primarily target either the latency or the energy
consumption without adequately exploring their interrelation-
ship. Also, they frequently neglect the integration of user-



specific experiences and collective knowledge to improve the
decision-making process. This paper presents the NEMESIS
framework, which addresses these research gaps by enabling
the users to optimize their MEC server selection and data
offloading strategies. NEMESIS considers the reliability of
the MEC servers based on individual interactions and shared
user experiences and incorporates a regret learning approach
to adapt to varying information scenarios.

The main contributions of this paper are summarized below.
1) The paper introduces a comprehensive system model for

e-health applications utilizing MEC servers and defining
the users’ interactions, data offloading processes, and the
impact of various IoMT devices on the data management.
Also, the wireless communication characteristics among
the users’ IoMT devices and the MEC servers are thor-
oughly analyzed.

2) A novel utility function is introduced considering both the
energy and time overheads, which helps in evaluating the
trade-offs involved in the users’ optimal MEC servers’
selection and task offloading decisions.

3) A novel reliability model is proposed considering the
users’ direct interactions with the MEC servers to process
their IoMT devices’ data, as well as the experience shared
from trusted peer evaluations. The proposed reliability
model accounts for the users’ experiences and reviews to
the MEC servers for their provided computing services
and is based on an intelligently aggregated feedback from
the users’ direct and indirect interactions with the MEC
servers through their peers.

4) A regret learning mechanism is designed to determine the
users’ optimal MEC servers’ selection and task offloading
strategies under complete and incomplete information
regarding their peers’ decisions. The regret learning al-
ghorithm’s convergence is shown to an ϵ-coarse correlated
equilibrium point, enabling the stable operation of the
MEC-assisted IoMT system.

5) Detailed numerical results show the efficient operation
of the NEMESIS framework in a real-time manner, as
well as its superiority compared to state-of-the-art task
scheduling and offloading schemes in IoMT systems in
terms of improved latency and energy consumption.

The remainder of this paper is organized as follows. Section
II introduces the MEC-assisted e-health system model, while
the MEC servers’ reliability model is discussed in Section
III. Section IV analyzes the regret learning-based MEC server
selection and task offloading NEMESIS framework, while
detailed numerical results are presented in Section V. Finally,
Section VI concludes the paper.

II. MEC-ASSISTED E-HEALTH SYSTEM MODEL

An IoMT system is considered, consisting of a set of users
N = {1, . . . , n, . . . , |N |}, where each user is equipped with
an IoMT device, e.g., smartwatches, fitness trackers, glucose
monitors, etc. A set of MEC servers K = {1, . . . , k, . . . , |K|}
resides in the users’ vicinity, supporting their computing
demands to offload and process their e-health data generated

by their IoMT devices. The users’ IoMT devices require sub-
stantial data processing to monitor the users’ health metrics,
such as movement and heart rate. To efficiently manage these
processing tasks, the users can offload their data to multiple
MEC servers. If a user n offloads data to the MEC server k at
timeslot t, then atn,k = 1 (otherwise atn,k = 0). Let us denote
by btn,k [bits] the volume of data offloaded to MEC server k
by the user n.

The users experience different levels of path loss during
the task offloading process, which depends on their physical
distance from the MEC servers and the surrounding environ-
ment and its fading characteristics. The path loss character-
istics experienced by the users significantly impact their task
offloading decisions, particularly regarding their experienced
latency and energy consumption.

Based on the third generation partnership project (3GPP)
[13], the Line of Sight (LoS) and non-LoS (NLoS) path losses
experienced between node n and a MEC server k residing in
2D and 3D distances, denoted as d2Dn,k(t) [m] and d3Dn,k(t) [m],
respectively, during timeslot t, are represented as PLLoS

n,k (t)

[dB] and PLNLoS
n,k (t) [dB], respectively. The calculation for

these losses is as follows:

PLLoS
n,k (t) =

{
PL1[dB], if 10m ≤ d2Dn,k(t) ≤ dBP

PL2[dB], if dBP < d2Dn,k(t) ≤ 5km
(1a)

PLNLoS
n,k (t) = max(PLLoS

n,k (t), 13.54 + 39.08 log10(d
3D
n,k(t))

+20 log10(fc)− 0.6(hn − 1.5))
(1b)

where PL1 = 28 + 22 log10(d
3D
n,k(t)) + 20 log10(fc) and

PL2 = 28+40 log10(d
3D
n,k(t))+20 log10(fc)−9 log10[d

2
BP +

(hk−hn)
2]. Here, hk [m] is the height of the MEC server with

an effective height of h′
k = hk − hE , hn [m] is the height

of the user n with an effective height of h′
n = hn − hE

with hE = 1 [m] if hn < 13[m], and dBP =
4h′

kh
′
nfc

c ,
where c [m/s] denotes the speed of light. The resulting path
loss is calculated as, PLt

n,k = PrLoS
n,k (t)PLLoS

n,k (t) + (1 −
PrLoS

n,k (t))PLNLoS
n,k (t), where PrLoS

n,k (t) is the probability of
experiencing LoS communication during the timeslot t:

PrLoS
n,k (t) =


1, if d2Dn,k(t) ≤ 18m

[( 18
d2D
n,k

(t)
+ e−

d2Dn,k(t)

63 (1− 18
d2D
n,k

(t)
))(1 + C′(hn)

× 5
4
(
d2Dn,k(t)

100
)3e−

d2Dn,k(t)

150 )], if 18m < d2Dn,k(t)
(2)

with C ′(hn) = 0 if hn ≤ 13 [m], or, C ′(hn) =
hn−13

10

1.5
if

13 < hn ≤ 23 [m]. The resulting channel gain between the
user n and the MEC receiver k during timeslot t is gtn,k =

1

10
PLt

n,k
10

.

Considering the users’ channel gain characteristics and their
transmission power Pn[W ],∀n ∈ N , the user’s corresponding
data rate is given as follows:

rtn,k = ω log2

1 +
Png

t
n,k

I0 +
∑

∀n′∈Kn

Pn′gtn′,k

 [bps] (3)



where ω [Hz] denotes the available bandwidth in the commu-
nication links among the users and the MEC server, and Kn

denotes the set of other users simultaneously offloading to the
same server k selected by n. Thus, the transmission latency
experienced by user n while offloading btn,k to the MEC server
k in timeslot t is calculated as follows:

TLt
n,k =

atn,kb
t
n,k

rtn,k
[s] (4)

The latency experienced by a user in order for the MEC
server to process the offloaded data is defined as the duration
from its arrival to its completion. This total time consists of
two parts, i.e., the time spent waiting and the time spent on
computation. To represent the execution dynamics of a task
on an edge server, we utilize an M/M/1 queue model, since
both the intervals between incoming tasks and their respective
processing times follow exponential distributions. Thus, the
average serving time for a user n who offloads btn,k data to
server k in timeslot t is determined as follows [14]:

SLt
n,k =

atn,k
ϕt
nat

n,k
bt
n,k

Fk∑
∀n′∈Kn∪n

ϕt
n′a

t
n′,k

bt
n′,k

ck
− nt

k

∆t

[s] (5)

where Fk [CPU−Cycles
s ] is the CPU frequency of the server

k, ϕt
n is the computing intensity [CPU−cycles

bit ] requirement of
user’s n data, ck[CPU − Cycles] is the average number of
CPU cycles assigned to tasks arriving, nt

k is the number of
tasks executed on k in time slot t such that nt

k

∆t represents the
arriving rate of tasks at the MEC server k.

The user’s utility is determined by the processing of a
substantial volume of data on a reliable MEC server (first term
of Eq. 6), while also considering low energy consumption for
offloading the data to the MEC server (second term of Eq.
6), and minimal latency to facilitate the timely offloading and
processing of the data (third term of Eq. 6). Thus, the user’s
utility from offloading and processing its data to a MEC server
k is captured as follows.

U t
n,k = αn ln

(
1 +

∑
∀k∈K

atn,kρ
t
n,kb

t
n,k

)
−

βn

∑
∀k∈K

TLt
n,kPn − γn

∑
∀k∈K

(TLt
n,k + SLt

n,k)

(6)

where αn, βn[
1
J ], γn[

1
s ] ∈ R+ are controlling parameters of

each term’s impact on the user’s utility, and ρtn,k ∈ R+ repre-
sents the user’s belief regarding the MEC server’s reliability
with respect to the provided computing services, as explained
in detail in the next section.

III. MEC SERVER’S RELIABILITY

The MEC servers exhibit varying levels of reliability based
on the computing services they offer to the users. Each
user develops a unique perception of the reliability of the
MEC servers while considering their personalized treatment
during the data offloading and processing. This perception is
influenced by the volume of data being offloaded, the actual

computing capabilities of the MEC server, and the proximity
of the server to the user. The user’s individualized belief
regarding the reliability of the MEC server is defined as
follows:

Bt
n,k =

atn,kb
t
n,k

d3Dn,k(t)
Zipf(xk) (7)

where Zipf(xk) = z1
(1/xk)z2

, X = {x1, . . . , xk, . . . XK},
xk, z1, z2 ∈ R+ and larger x denotes higher CPU frequency.
If Bt

n,k > Bthr , where Bthr > 0, then the user perceives
a positive experience with the MEC server k resulting in
increased confidence in the server’s reliability. The exact oppo-
site holds true if Bthr < 0. In both cases, the user’s perception
of the server’s reliability diminishes over time as previous
experiences become less salient, replaced by more recent
interactions. Based on this observation, the user’s evaluation
of both positive (Eq. 8) and negative services (Eq. 8) can be
expressed as follows:

R+
n,k =

λn,k∑
λ=1

δλn,k log2

(
b

T − tλn,k
+ 1

)
(8)

R−
n,k =

λn,k∑
λ=1

(1− δλn,k) log2

(
b

T − tλn,k
+ 1

)
(9)

where

δ
λn,k

n,k =

{
1, if Bt

n,k ≥ Bthr

0, otherwise
(10)

is a binary variable capturing if the MEC server’s provided
services satisfied the user’s reliability threshold or not, λn,k is
the number of times that user n selected to offload btn,k bits
to the MEC server k, T is the total time that we examine the
data offloading process, tλn,k is the time instance that user n
selected the MEC server k at the λn,kth interaction, and b > 0
captures the time decay factor. It is noted that small values of
b indicate a faster rate of forgetting past interactions.

Based on the services experienced by the users from the
MEC servers, each user n develops a personal reliability belief
for each server k, which is derived as follows.

Rn,k = E
(
beta(R+

n,k + 1, R−
n,k + 1)

)
=

R+
n,k + 1

R+
n,k +R−

n,k + 2
(11)

In the MEC-assisted IoMT system, all the users share a
common objective, i.e., to receive the fastest service from
the MEC servers while efficiently transmitting and processing
their data. Thus, the personal reliability belief of user n regard-
ing server k is influenced by other users n′ who are also served
by server k and exhibit similar levels of personal reliability
belief. Specifically, if the absolute difference between the
reliability beliefs of users n and n′ for server k falls within
a predefined threshold RThr (i.e., |Rn,k − Rn′,k| ≤ RThr),
then user n considers user n′ as a trusted peer in evaluating
server k. As a result, each user n will establish a set of trusted
users, denoted as N tr

n , which collectively influence their trust
in the server. The final expression for the personal reliability



belief of user n for the MEC server k, regarding the positive
(Eq. 12) and negative (Eq. 13) offered computing services, is
derived as follows.

R̂+
n,k = w1R

+
n,k + w2

|N tr
n|∑

n′=1

R+
n′,k (12)

R̂−
n,k = w1R

−
n,k + w2

|N tr
n|∑

n′=1

R−
n′,k (13)

Thus, the overall level of personal reliability belief calcu-
lated by user n for a MEC server k is formulated as follows.

ρtn,k = E
(

beta(R̂+
n,k + 1, R̂−

n,k + 1)
)
=

R̂+
n,k + 1

R̂+
n,k + R̂−

n,k + 2
(14)

IV. NEMESIS FRAMEWORK

In this section, the NEMESIS framework is introduced
to enable the users to autonomously determine their opti-
mal MEC server selection and data offloading strategies. To
achieve this goal, a regret learning-motivated noncooperative
game model is introduced. Formally, the game is defined
as G = [N , {Sn}∀n∈N , {U t

n,k}∀n∈N ,k∈K], where N is the
set of users (players), Sn is the user’s strategy set with
(sn = (atn,k, b

t
n,k)), and U t

n,k denotes the user’s utility function
(Eq. 6). In this work, we present a detailed examination of
the NEMESIS framework within two distinct scenarios: (1)
when complete information is available and (2) when complete
information regarding the strategies of other users is lacking.
Complete Information: In this case, each user is aware of
the strategies of the rest of the users and selects a strategy
sn ∈ Sn with a given probability. Given that |Sn| < +∞,
the game G has at least one equilibrium in mixed strategies,
which is defined as follows.
Definition 1: (ϵ-coarse correlated equilibrium) A mixed
probability strategy profile Prn = (Prn,s1n , . . . ,Prn,s|Sn|

n
) is

an ϵ-coarse correlated equilibrium, if ∀n ∈ N and ∀s′n ∈ Sn

the following property holds.∑
∀s−n

(U t
n,k(s

′
n, s−n)Pr−n,s−n)−

∑
∀sn

(U t
n,k(sn, s−n)Prn,sn) ≤ ϵ

It is noted that Pr−n,s−n
=
∑

∀sn∈Sn
Pr(sn, s−n) repre-

sents the marginal probability distribution concerning sn and∑
∀sn∈Sn

Prn,sn = 1. For every n ∈ N , the regret for choosing

a strategy sin, i ∈ {1, 2, . . . ,Sn} during a particular round t is
calculated as follows.

rn,sin(t) = λ
[
U t
n,k(s

i
n, s−n)− U t

n,k(sn, s−n)
]
+

(1− λ)
1

t− 1

t−1∑
j=1

[
U j
n,k(s

i
n, s−n)− U j

n,k(sn, s−n)
] (15)

where λ ∈ R+ discounts the influence of past regrets [15].
User’s n regret vector is: rn(t) = (rn,s1n(t), . . . , rn,s|Sn|

n
(t)).

From the analysis of a particular regret value during a
specific iteration, the subsequent insights can be derived. If
rn,sin(t) > 0, the user n was better off choosing sin previously,

while if rn,sin(t) ≤ 0, then user n has no regret in choosing
sin. In the following rounds of strategy selection, user n
chooses the strategy that exhibits the greatest regret based
on the mixed strategy probability distribution (Eq. 16), where
rmax
n,sin

(t) = max
∀sin∈Sn

{0, rn,sin(t)}.

Prn,sin(t) =
rmax
n,sin

(t)∑
∀ sin∈Sn

rmax
n,si′n

(t)
(16)

Incomplete Information: In practical scenarios, the user n
is typically unaware of the MEC server selection and data
offloading strategies employed by other users. Thus, each user
n must rely solely on their own information and environmental
factors, such as interference, when executing the optimal
strategy selection process [15]. As a result, the user’s regret in
the context of incomplete information regarding the strategies
of other users can be reformulated as follows.

r̂n,sin(t) = λ
[
Û t
n,k(s

i
n, s−n)− Û t

n,k(sn, s−n)
]

+(1− λ)
1

t− 1

t−1∑
j=1

[
U j
n,k(s

i
n, s−n)− U j

n,k(sn, s−n)
] (17)

where Û t
n,k = αn ln

(
1 +

∑
∀k∈K

atn,kρ
t
n,kb

t
n,k

)
−

βn

∑
∀k∈K

TLt
n,kPn. Similarly to the Complete Information

scenario, the user selects a strategy in the following rounds
based on the mixed strategy probability distribution, with
r̂max
n,sin

(t) = max
∀sin∈Sn

{0, r̂n,sin(t)}.

P̂rn,sin(t) =
r̂max
n,sin

(t)∑
∀ sin∈Sn

r̂max
n,si′n

(t)
(18)

Theorem 1: The regret learning algorithm under the complete
and incomplete information scenarios converges to an ϵ-coarse
correlated equilibrium.

Proof: To demonstrate the regret learning algorithm’s
convergence, we need to show the user’s utility function,
which feeds the regret values’ calculation, is a Lipschitz
function, while also considering that the strategy space of
each user Sn is bounded [16]. In the following, we an-
alyze each term of Eq. 6. For the first term, we have:

∂
∂btn,k

(
αn ln (1 +

∑
∀k∈K atn,kρ

t
n,kb

t
n,k)

)
=

αna
t
n,kρ

t
n,k

1+at
n,kρ

t
n,kb

t
n,k

with lim
btn,k→∞

αna
t
n,kρ

t
n,k

1+at
n,kρ

t
n,kb

t
n,k

= 0 and lim
btn,k→0

αna
t
n,kρ

t
n,k

1+at
n,kρ

t
n,kb

t
n,k

=

αna
t
n,kρ

t
n,k. Focusing on the second term, we have:

∂
∂btn,k

(
βn

∑
∀k∈K

TLt
n,kPn

)
=

βnPna
t
n,k

ω log2(1+
Pngt

n,k

I0+
∑

∀n′∈Kn

P
n′gtn′,k

)

∈

R. Finally, for the third term of Eq. 6, we have:
∂

∂btn,k

(
γn

∑
∀k∈K

TLt
n,k + SLt

n,k

)
= ∂

∂btn,k

(
γnTL

t
n,k

)
−

γna
t
n,kc

2
k∆t2

at
n,kϕt

n,k∑
∀n′∈Kn∪n

at
n′,k

ϕt
n′,k

bt
n′,k

Fk

(
at
n,k

ϕt
n,k

bt
n,k∑

∀n′∈Kn∪n

at
n′,k

ϕt
n′,k

bt
n′,k

Fk∆t−cknt
k)

2

. The first term of the
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Fig. 1: NEMESIS framework’s pure operation and performance from the users’ perspective.
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Fig. 2: NEMESIS framework’s pure operation and perfor-
mance from the MEC servers’ perspective.

later derivative is bounded, while for the second term, we

have: lim
btn,k→∞

−
γna

t
n,kc

2
k∆t2

at
n,kϕt

n,k∑
∀n′∈Kn∪n

at
n′,k

ϕt
n′,k

bt
n′,k

Fk

(
at
n,k

ϕt
n,k

bt
n,k∑

∀n′∈Kn∪n

at
n′,k

ϕt
n′,k

bt
n′,k

Fk∆t−cknt
k)

2

 =

0 and lim
btn,k→0

−
γna

t
n,kc

2
k∆t2

at
n,kϕt

n,k∑
∀n′∈Kn∪n

at
n′,k

ϕt
n′,k

bt
n′,k

Fk

(
at
n,k

ϕt
n,k

bt
n,k∑

∀n′∈Kn∪n

at
n′,k

ϕt
n′,k

bt
n′,k

Fk∆t−cknt
k)

2

 =

−γna
t
n,kc

2
k∆t2

c2kn
t
k
2 ∈ R. Thus, the derivative of the utility function

is bounded, resulting in a Lipschitz function.

V. NUMERICAL RESULTS

In this section, a detailed simulation-based analysis is
presented to demonstrate the pure operation and performance
of the NEMESIS framework (Section V-A) and its scala-
bility (Section V-B). Also, a real-world application of the
NEMESIS is presented (Section V-C) along with a detailed
comparative evaluation to other state-of-the-art task scheduling
and offloading schemes in IoMT systems (Section V-D). The
following parameters were used for the simulation, Fk ∈
[1, 5]GCPU−Cycles

s , nt
k = 20, ck = 1GCPU − Cycles,

∆t = 1s, ω = 5MHz, fc = 952.6MHz, Pn = 50mW ,
b = 0.7, λ = 0.8, d3Dn,k(t) ∈ [65, 250]m, hn = 3m, hk = 25m,
unless otherwise stated. For demonstration purposes, we con-
sider that users with higher ID are characterized by longer
distances from the servers and lower amount of generated
data. Similarly, MEC servers with higher ID reside at longer
distances from the users and have lower CPU frequency Fk.

A. Pure Operation of NEMESIS framework

Fig. 1a – 1c present the users’ utility (Eq. 6), energy cost
(second term of Eq. 6), and maximum experienced latency
by offloading to multiple selected servers as a function of
the regret learning mechanism’s iterations (lower horizontal

axis) and its real execution time (upper horizontal axis)
under the complete and incomplete information scenarios,
respectively. The results show that users residing at further
distances from the servers experience higher energy cost and
latency, resulting in lower utility. Moreover, the results indicate
that the proposed NEMESIS framework under the incomplete
information scenario achieves very similar results as in the
complete information, while experiencing longer convergence
time (almost double), due to the longer exploration process.

Fig. 2a - 2b illustrates the MEC servers’ weighted comput-
ing capacity based on the users’ reliability (i.e.,

∑
n∈N

ρtn,k ·Fk)

and their data processing load (i.e.,
∑

n∈N
btn,k ·Fk) as a function

of the regret learning mechanism’s iterations and real execu-
tion time, respectively. The results show that the MEC servers
with higher computing capacity consistently achieve higher
reliability among the users due to the superior computing
services they provide. This leads to their higher weighted
computing capacity (Fig. 2a), enabling them to handle a larger
data processing load (Fig. 2b).

B. Scalability Analysis

In this section, a scalability analysis of the NEMESIS
framework is performed for an increasing number of users
to quantify its robustness in large-scale IoMT systems. Fig.
3a – 3b present the mean users’ utility, latency, energy cost,
and execution time of the NEMESIS framework as a function
of an increasing percentage of users, respectively. The results
show that a 100% increase in the number of users results in
5.84% decrease in the users’ mean utility, and a relatively
large increase in the latency, energy cost, and execution time
of NEMESIS. However, it is noted that even with this large
increase in the number of users, the absolute values of the
latency, energy cost, and execution time remain reasonably
small. Thus, we conclude that the NEMESIS framework can
still be implemented in a near-real-time manner in large
scale IoMT systems, while the users’ experienced energy and
latency cost increases exponentially. The later observation is
an inherent characteristic of the IoMT systems, which can be
resolved by more densely developing MEC servers to support
the users’ increasing computing demands.

C. Real-world Scenario of NEMESIS

In this section, we present a real-world scenario to illustrate
the practical application of the NEMESIS framework in an
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Fig. 3: Scalability analysis.

Fig. 4: Real-world scenario of implementing NEMESIS.
e-health context. The scenario involves a patient being trans-
ported from home to a hospital via ambulance. As the pa-
tient’s condition becomes more critical during the journey, the
volume of data generated by monitoring vital signs increases,
necessitating more robust computational support. Fig. 4 depicts
the patient’s utility, data volume, distance from the hospital,
energy cost, and latency across the three distinct stages of
the journey. The results indicate that as the patient moves
closer to the hospital, where the MEC server is assumed to
be located, the utility improves significantly due to reductions
in both latency and energy consumption. This demonstrates
the NEMESIS framework’s ability to adapt dynamically to
emergency situations, offering optimized resource allocation
and data offloading in real-time.

D. Comparative Evaluation

In this section, a comparative evaluation of the NEME-
SIS framework compared to three state-of-the-art scenarios
is performed. The comparative scenarios are described as
follows: (i) Uniform: Data is offloaded equally across all the
servers. (ii) Proportional to Computing Capacity (PtCC): Data
is offloaded to MEC servers in proportion to their computing
capacity; and (iii) Proportional to Reliability (PtR): Data is
distributed among MEC servers proportionally to their relia-
bility levels. The results show that the NEMESIS framework
has superior performance compared to these alternatives by
achieving lower average latency and reduced total energy cost.
This superior performance is achieved due to the NEMESIS’s
ability to dynamically account for both the reliability and
computing capacity of each MEC server, rather than relying
on static or simplified criteria.

VI. CONCLUSION

In conclusion, this paper introduces the NEMESIS frame-
work, which effectively addresses existing research gaps in
optimal MEC server selection and data offloading strategies
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Fig. 5: Comparative Evaluation.
for e-health applications by introducing a reliability and regret
learning-based solution. Part of our future work is the exten-
sion of NEMESIS to incorporate security guarantees during
the users’ data offloading and processing at the MEC servers.
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