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Abstract—The need to maintain efficient and environmentally
responsible data processing at the network edge has introduced
a new research field in the area of edge computing sustainability.
This paper introduces a novel social-aware, trust-based data
offloading framework, named TANDEM, in Multi-access Edge
Computing (MEC) environments. TANDEM is designed to jointly
optimize the user’ data offloading strategies and the MEC
providers’ dynamic pricing policies. TANDEM incorporates a
social-aware trust model based on direct and indirect interactions
of the users with the MEC servers, and is based on a Stackelberg
game-theoretic approach to optimize the data offloading and
pricing. TANDEM significantly outperforms existing methods
by reducing carbon emissions in MEC systems and ensuring
a sustainable edge computing environment.

Index Terms—Sustainable Computing, Social-aware Trust,
Game Theory, Network Economics, Edge Computing.

I. INTRODUCTION

Nowadays, the Multi-Access Edge Computing (MEC)
servers’ energy demands and carbon footprint increase rapidly
due to the increased demand for computing resources and
the plethora of data processing services. Sustainable data
offloading and processing practices, e.g., the integration of
renewable energy source, can mitigate this phenomenon [1].
Complementary, the appropriate consideration of the trust
risks associated with the MEC servers’ Quality of Service
(QoS) can substantially improve the sustainable computing and
accommodate the users’ computing demands [2].

In this paper, the TANDEM framework is introduced to
support the users’ optimal data offloading and MEC servers’
pricing policies toward improving the carbon emissions. TAN-
DEM proposes a novel social-aware trust model, where the
users exploit their direct and indirect interactions with the
MEC servers, exploring their social ties with other peers
to build their personal trust scores to the MEC servers. A
Stackelberg game-theoretic approach is proposed to optimize
the users’ data offloading strategies and the MEC providers’
pricing policies in order to achieve a more sustainable MEC
computing environment with reduced carbon emissions.

A. Related Work

Carbon-aware sustainable computing has recently attracted
the interest of the research community to mitigate the problem
of global warming and improve the utilization of renewable
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energy sources. A carbon-aware data offloading approach is
introduced in [3] by integrating carbon emission rights pur-
chasing and task management using a two-timescale Lyapunov
optimization technique, towards minimizing the accuracy loss
and managing the costs effectively despite uncertainties. Aim-
ing at improving the energy efficiency in data processing,
the authors in [4] present a cross-layer cooperative scheme
for optimizing resource allocation in cloud-edge environments
based on a deep reinforcement learning (DRL)-enabled task
offloading strategy. A similar DRL-based approach is analyzed
in [5] to optimize the providers’ profit in integrated space-air-
ground networks powered by green energy, while considering
the user requirements and green energy dynamics.

Recent research works have increasingly focused on trust-
aware data offloading in MEC environments to provide users
with informed decision-making support throughout the data of-
floading process [6]. A reward model for local and re-offloaded
tasks and an efficient trust acquisition method are introduced
in [7] to improve the data offloading process in MEC systems
by enhancing the data offloading rate. A multi-feedback trust
mechanism and trust weight k-means clustering are proposed
in [8] to facilitate the data offloading in order to enhance the
reliability, efficiency, and responsiveness of task allocation in
MEC systems. A trust mechanism for efficient data offloading
in Unmanned Aerial Vehicles-enabled (UAVs) MEC systems
is designed in [9] to improve the task completion rates and
delays, and optimize the UAVs’ trajectories.

Moreover, the problem of optimizing the MEC servers’
pricing strategies is an ongoing research effort in the research
community [10]. A game-theoretic computation offloading
and resource pricing scheme for blockchain-enabled MEC is
introduced in [11] aiming at improving the trust in resource
transactions, the users’ experience, and the MEC providers’
revenue. The optimization of the pricing, data offloading dis-
tribution among MEC servers, and social welfare is achieved in
[12] based on a double auction mechanism. A game-theoretic
algorithm is designed in [13] to determine the optimal pricing
and resource allocation strategies that maximize the benefits
for both the MEC servers and the users.

B. Contributions and Outline

Despite the significant research efforts made in the existing
literature regarding the carbon-aware and trust-aware data
offloading strategies in MEC environments, the problem is



addressed in a fairly isolated manner. The existing research
efforts either address the carbon-aware strategies without con-
sidering the trust levels between MEC providers and users or
focus on trust-aware models without fully integrating the MEC
providers’ sustainability or their dynamic pricing strategies.

In this paper, we introduce TANDEM, i.e., a social-aware
trust-based data offloading framework, which jointly optimizes
the users’ data offloading and the MEC servers’ personalized
pricing, aiming at supporting a sustainable edge computing
environment. TANDEM contributions are summarized as fol-
lows.

1) A social-aware trust model is introduced to enable the
users to exploit their direct and indirect trust, as it is de-
rived from their direct interaction with the MEC providers
and the feedback provided by their peers, respectively.

2) Novel utility functions are introduced to capture the
users’ QoS benefits and costs, accounting for the trust
scores, data processing capacities, personalized pricing
associated with the MEC providers, and the servers’
profit.

3) A Stackelberg game-theoretic approach determines the
users’ optimal data offloading strategies and the MEC
providers’ pricing policies, while considering the social-
aware trust model. The existence of a Stackelberg equi-
librium is shown via detailed mathematical analysis.

4) Detailed numerical results demonstrate the pure operation
of the TANDEM framework, as well as its superiority
compared to alternative data offloading mechanisms pro-
posed in the state of the art, in terms of substantially
reducing the MEC environment’s carbon emissions.

In the rest of the paper, Section II presents the social-aware
trust model, while the trust-aware sustainable data offloading
is analyzed in Section III. The Stackelberg game-theoretic
approach is analyzed in Section IV. Experimental results are
presented in Section V, and Section VI concludes the paper.

II. SOCIAL-AWARE TRUST MODEL

A MEC system consists of a set of users N =
{1, . . . , n, . . . , N} and servers K = {1, . . . , k, . . . ,K}. Each
user has a total amount of data Bmax

n [bits] that need to be
processed in the MEC environment. Also, each MEC server is
characterized by a maximum amount of data Bmax

k [bits] that
can be processed in parallel based on its computing capacity.
Each MEC server announces a personalized price Pk,n

[
$

bits

]
to each user regarding the processing of its offloaded data and
has a data processing cost ck

[
$

bits

]
. Each user offloads bn,k

[bits] data to each MEC server k, with
∑

k∈K bn,k = Bmax
n .

The users’ preference to a MEC server is captured based
on the data that they offload to the server, the server’s carbon
emissions sustainability, and its capacity to handle data. Thus,
the user’s server preference is quantified as follows:

Sn,k =
bn,k∑

∀n∈N bn,k
Zipf(xk)

Bmax
k∑

∀k∈K Bmax
k

(1)

where Zipf(xk) =
γ

xβ
k

, X = {x1, . . . , xk, . . . XK}, xk, γ, β ∈
R+ is the Zipf distribution capturing the level of carbon

emissions of an MEC server, where for presentation purposes
and without loss of generality, MEC servers with higher ID
are characterized by decreased environmental sustainability.

A. Direct Trust

Each user establishes direct trust in a MEC server based on
the QoS delivered by the server. A user positively values the
provided service if the server’s performance meets or exceeds a
certain preference threshold Sthr, i.e., δλn,k

n,k = 1, if Sn,k ≥ Sthr.
If the server’s performance falls below this threshold, the user
perceives the service quality as unsatisfactory, i.e., δλn,k

n,k = 0.
In both scenarios, the user’s perception of the server’s service
quality decays over time. Based on this understanding, the
user’s appreciation of both good (Eq. 2) and bad (Eq. 3)
services can be formulated as follows:

GSn,k =

λn,k∑
λ=1

δλn,k log2

(
b

T − tλn,k
+ 1

)
(2)

BSn,k =

λn,k∑
λ=1

(1− δλn,k) log2

(
b

T − tλn,k
+ 1

)
(3)

where λn,k is the number of times that user n selected to
offload bn,k bits to the MEC server k, T is the total time
that we examine the data offloading process, tλn,k is the time
instance that user n selected server k at the λn,k interaction,
and b > 0 is the decay factor. It is noted that small values of
b indicate a quicker rate of forgetting past interactions.

Each user n develops a direct trust with each server k based
on the provided services that is derived as follows.

DTn,k = E (beta(GSn,k + 1, BSn,k + 1))

=
GSn,k + 1

GSn,k +BSn,k + 2

(4)

B. Indirect Trust

The users may not frequently interact directly with some
MEC servers, thus, their direct trust may not reflect the
provided QoS. The users can leverage the peers’ experiences,
with whom they maintain social connections and they have
similar computing demands. This approach allows the users to
form a more accurate perception of the MEC server services,
even in cases where their own interaction is limited. Also,
each user seeks to identify the peers whose direct experiences
are most similar to their own (implying similar computing
demands), thus assigning greater trust to those peers compared
to others. The most trusted user n̂ for each server k is
determined as follows.

n̂k = arg min
n̂k∈N

 ∑
∀n∈N ,n′ ̸=n

|DTn′,k −DTn,k|

 (5)

Based on the identified most trusted peers n̂k for each server
k, k ∈ K, each user is aware of the set of the most trusted
peers N tr. The user incorporates the opinions of its trusted
users |N tr| (second terms of Eq. 6 and Eq. 7) along with its
personal direct trust (first terms of Eq. 6 and Eq. 7) in order



to establish its own overall trust to a server k to provide good
(Eq. 6) or bad (Eq. 7) services.

OGSn,k = w1GSn,k + w2

|N tr|∑
n′=1

GSn′,k (6)

OBSn,k = w1BSn,k + w2

|N tr|∑
n′=1

BSn′,k (7)

The user’s n overall trust to a MEC server k is given below.

τn,k = E (beta(OGSn,k + 1, OBSn,k + 1))

=
OGSn,k + 1

OGSn,k +OBSn,k + 2

(8)

III. TRUST-AWARE SUSTAINABLE DATA OFFLOADING

Each user experiences a utility by offloading its data to the
MEC servers while considering the trust established during
their interactions and the personalized pricing by the MEC
servers. Therefore, the user’s utility is formulated as follows:

Un(bn,b−n) = an ln

(
1 +

∑
k∈K

τn,kbn,k

)
−
∑
k∈K

Pk,nbn,k (9)

where αn ∈ R+ denotes the satisfaction factor from process-
ing the data to the servers, bn = {bn,1, . . . , bn,k, . . . , bn,K}
denotes the user’s data offloading vector to the K servers, and
b−n = {b1, . . . ,bn−1,bn+1, . . . ,bN} is the data offloading
vector of all other users except for user n. The logarithmic
function is adopted to model the user’s satisfaction, as it
increases with the processing of the user’s data. However, due
to the bounded nature of the user’s maximum data volume
Bmax

n , the utility experiences diminishing returns and results
in a slower rate of increase beyond a certain threshold, i.e.,
Bmax

n . The second term of Eq. 9 captures the user’s cost from
processing its data to the MEC servers.

Focusing on the MEc server’s side, the profit of the MEC
server from processing the users’ data is formulated as follows:

Uk,n(Pk,n) = Pk,nbn,k − ckbn,k (10)

where the first term captures the MEC server’s revenue and
the second term represents the data processing cost.

IV. A STACKELBERG GAME-THEORETIC APPROACH

The goal of each user (leader) is to determine its optimal
data offloading vector bn to the MEC servers in order to
maximize its utility. Similarly, the goal of each MEC server
(follower) is to determine the optimal personalized pricing
Pk,n announced to each user in order to maximize its profit.
The decisions of the users and the MEC servers are tightly
connected to each other, thus, they can be formulated as a
multi-leader multi-follower Stackelberg game.
Stage II: Leaders – Users: Each user’s goal is to maximize
its utility (Eq. 11a), while considering the data offloading
feasibility constraints (Eq. 11b – 11c) and the MEC servers’
personalized pricing policies, i.e., Pk,n,∀k ∈ K. The optimiza-
tion problem for each user n ∈ N is formulated as follows.

max
bn

Un(bn,b−n) (11a)

s.t. 0 ≤ bn,k ≤ Bmax
n (11b)∑

k∈K

bn,k = Bmax
n (11c)

Theorem 1: (Optimal Data Offloading Strategy) Each user’s
n optimal data offloading strategy to a MEC server k is:

b∗n,k =
an
Pk,n

−

(
1 +

∑
k′∈K,k′ ̸=k τn,k′bn,k′

)
τn,k

. (12)

Proof: Toward determining the user’s optimal data of-
floading strategy bn,k to each MEC server k, we cal-
culate: ∂Un

∂bn,k
=

anτn,k

1+
∑

k∈K τn,kbn,k
− Pk,n and ∂2Un

∂b2n,k
=

− anτ
2
n,k

(1+
∑

k∈K τn,kbn,k)
2 < 0, which implies that Un(bn,b−n)

is concave with respect to bn,k. Thus, Un(bn,b−n) has a
maximum point, which can be derived as follows: ∂Un

∂bn,k
=

0 =⇒ 1 +
∑

k′∈K,k′ ̸=k τn,k′bn,k′ + τn,kbn,k =
anτn,k

Pk,n
=⇒

b∗n,k = an

Pk,n
− (1+

∑
k′∈K,k′ ̸=k τn,k′bn,k′)

τn,k
.

Stage II: Followers - MEC Servers: The goal of each MEC
server is to maximize its profit, considering the users’ data
offloading strategies (Eq. 12). Each MEC server’s profit (Eq.
10) can be rewritten by utilizing Eq. 12 as follows:

Uk

(
Pk,n,P−k,n

)
=

(
Pk,n − ck

)
[
an

Pk,n
−

1 +
∑

k′∈K
k′ ̸=k

τn,k′bn,k′

τn,k
] (13)

where P−k,n = (P1,n, . . . , Pk−1,n, Pk+1,n, . . . , PK,n) de-
notes the prices of all other servers except for server k.

Thus, the corresponding optimization problem for each
MEC server k is formulated as follows:

max
Pk,n

Uk (Pk,n,P−k,n) (14a)

s.t. 0 ≤ Pk,n ≤ Pmax
k (14b)

0 ≤
∑
n∈N

bn,k ≤ Bmax
k (14c)

where Eq. 14b captures the market constraint with respect to
the maximum allowed price Pmax

k based on the regulations
for edge computing services per region that the MEC server k
resides, and Eq. 14c reflects the feasible bounds of the MEC
server’s data processing capacity.

The MEC servers actively compete to attract users for
offloading their data by offering customized pricing Pk,n based
on individual user requirements. Thus, a non-cooperative game
GK = {K, {Ak}k∈K, {Uk,n}∀k∈K,∀n∈N } is formulated, where
K is the set of players, i.e., MEC servers, Ak = [0, Pmax

k ]
denotes their strategy set of pricing policies, and Uk,n captures
their profit from serving the users.
Theorem 2: (Existence of Nash Equilibrium) A Nash
Equilibrium (NE) P∗

n = [P ∗
1,n, . . . , P

∗
k,n, . . . , P

∗
K,n] exists in

the non-cooperative game GK.
Proof: The strategy set Ak = [0, Pmax

k ] is a non-
empty, convex, and compact set. Also, the MEC server’s



profit function (Eq. 10) is continuous in Pn. We examine the
concavity of the profit function with respect to Pk,n as follows
∂Uk,n

∂Pk,n
=
[

an

Pk,n
− 1+

∑
k′ ̸=k τn,k′bn,k′

τn,k

]
− (Pk,n − ck)

an

P 2
k,n

given

that ∂bn,k′

∂Pk,n
= 0 and ∂2Uk,n

∂P 2
k,n

= − 2ckan

P 3
k,n

< 0. Thus, Uk,n is
concave in Pk,n, and the non-cooperative game GK has at
least one Nash Equilibrium, derived as follows [14].

P ∗
k,n =

√
τn,kckan

1 +
∑

k′ ̸=k τn,k′bn,k′
(15)

Theorem 3: (Uniqueness of Nash Equilibrium) The non-
cooperative game GK has a unique NE.

Proof: We need to show that the NE (Eq. 15) is a best
response standard function, i.e., the conditions of positivity,
monotonicity, and scalability hold true [15]. The best response
strategy of GK is derived from Eq. 15, as follows.

BRk,n

(
P∗

−k,n

)
= P ∗

k,n (16)

Based on Eq. 16, we have BRk,n

(
P∗

−k,n

)
>

0, ∀P∗
−k,n > 0, thus, the condition of positivity

holds true. Focusing on the monotonicity, we
analyze Eq. 16, as follows: BRk,n

(
P∗

−k,n

)
=√

τn,kckan

1+
∑

k′ ̸=k τn,k′

(
an

P
κ′,n

−
1+

∑
κ′′ ̸=κ′ τ

n,κ′′ bn,κ′
τ
n,κ′

) . Thus,

we observe that BRk,n

(
P∗

−k,n

)
has a proportional

relationship to Pk′,n. Therefore, if P∗
−k,n ≥ P′∗

−k,n,

=⇒ BRk,n

(
P∗

−k,n

)
≥ BRk,n

(
P′∗

−k,n

)
, and the

condition of monotonicity holds true. Focusing on the
scalability, the following condition should hold true:
λBRk,n

(
P∗

−k,n

)
> BRk,n

(
λP∗

−k,n

)
, λ > 1. Based on

Eq. 16, we have:

λBRk,n

(
P∗

−k,n

)
BRk,n

(
λP∗

−k,n

) =

√
λ2 +

∑
k′ ̸=k λτn,k′bn,k′

1 +
∑

k′ ̸=k τn,k′bn,k′
> 1 (17)

Thus, the condition of monotonicity also holds true. We
conclude that the best response BRk,n

(
P∗

−k,n

)
is a standard

function, and the game GK has a unique Nash Equilibrium.
Based on Theorems 1 and 3, we conclude that a unique

Stackelberg Equilibrium
{
b∗n,k, P

∗
k,n

}
∀n∈N ,∀k∈K

exists and

a Best Response Dynamics algorithm can be adopted to
determine it [15].

V. EXPERIMENTAL RESULTS

In this section, detailed experimental results are presented
based on real datasets to demonstrate: (i) the pure
performance and operation of the TANDEM framework
(Section V-A), (ii) its applicability in real-world scenarios
(Section V-B), (iii) its scalability (Section V-C), and (iv)
its superiority compared to the state of the art in terms
of supporting a sustainable MEC environment (Section
V-D). In the rest of the analysis, the following dataset
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Fig. 1: (a) MEC servers’ carbon emissions and (b) TANDEM
framework’s convergence.

has been adopted, N = 15, K = 7, the convergence
threshold of the TANDEM framework is set equal to 1e−5,
Zipf(xk) = 1

x1.5
k

, x = [1, 2.48, 5.86, 7.64, 8.82, 9.27, 20],
b = 0.7, Sthr = 0.05, w1 = w2 = 0.5, ck = 2,
an = 1200, Bmax

k = [450, 350, 250, 200, 80, 20, 1][Ebits],
Bmax

n = [160, 150, . . . , 30, 20][Ebits], Pmax =
[10, 9, 8, 7, 6, 5, 4][ 1$

Pbit ], unless otherwise explicitly stated. A
real dataset from Microsoft Azure is used for our experiments,
as described below. The users’ processing tasks resemble
the training of a moderate-scale Large Language Model
(LLM), such as GPT-Neox-20B. GPT-Neox-20B shares a
similar architecture with GPT-3, and its training dataset
primarily consists of English texts. The MEC servers are
equipped with NVIDIA V100 Tensor Core GPUs, recognized
as state-of-the-art in GPU technology. With a memory
bandwidth of 900 GB/s, these GPUs are theoretically capable
of transferring and processing up to 900 gigabytes of data
per second under optimal conditions1. By using the Microsoft
Azure, we derived the total training time of GPT-Neox-20B
and the corresponding carbon emissions across various
server locations in North America. Based on Eq. 18, we can
accurately calculate the carbon emissions per bit, as follows:

CEk

BWGPU (GB/s) × T (s) × 8 bits
(18)

where BWGPU = 900 GB/sec, and CEk reflects the carbon
emissions per MEC server k residing in a corresponding
location in North America and processing computing tasks
for a time period T sec, where the values for the latter are
directly derived by the Microsoft Azure (Fig. 1a). It is noted
that the carbon emissions (CEk) differ across regions where
the servers reside, primarily due to the variations in the local
energy mix, with regions relying on fossil fuels generating
higher emissions. Also, differences in the efficiency of the
smart grid system, cooling requirements, and regional regula-
tions further contribute to the variability in carbon emissions.

A. Pure Operation and Performance

In this section, the pure operation and the performance
of the TANDEM framework are presented. Fig. 1b – 3b
demonstrate the convergence of the TANDEM framework with
respect to the pricing policies and data offloading strategies,
the MEC servers’ mean price, mean trust, mean profit, and the
users’ utility as a function of the TANDEM iterations.

1https://www.nvidia.com/en-us/data-center/v100/



Fig. 2: MEC servers’ (a) mean price, and (b) mean trust levels.

Fig. 3: (a) MEC servers’ profit and (b) users’ utility.

The results reveal that the TANDEM framework converges
fast to the Stackelberg Equilibrium (Fig. 1b), i.e., less than
5sec. The MEC servers’ pricing policies demonstrate min-
imal variation and converge more quickly than the users’
data offloading strategies. Considering the same convergence
criterion, the users adapt their decisions to the MEC servers’
pricing and the multiple available choices to offload their data.
Moreover, the results show that the more environmentally
friendly servers (Fig. 1a), result in higher pricing policies
(Fig. 2a), as eco-friendly servers typically follow more costly
protocols to minimize their environmental impact. Also, since
the more eco-friendly servers are capable of processing a
larger volume of data, they gain increased trust among the
users (Fig. 2b). Given that the more environmentally friendly
servers attract a larger amount of offloaded data at a higher
data processing price, they achieve a higher profit (Fig. 3a).
Furthermore, the results confirm that users with higher data
processing demands, i.e., those handling larger volumes of
data, achieve a greater utility, as they invest more in accessing
premium and resource-intensive computing services (Fig. 3b).

B. A Real-world Scenario

In this section, we analyze a real-world application of the
TANDEM framework considering a set of 7 MEC servers
with same data processing capacity (Bmax

k = 400[Ebits])
and 15 users with similar data processing requests (Bmax

n =
90[Ebits]). The objective is to evaluate the influence of both
the servers’ and users’ eco-friendliness on the MEC servers’
pricing strategies and the users’ data offloading decisions. Fig.
4 illustrates the MEC servers’ and users’ optimal decisions
at the Stackelberg Equilibrium. The heatmap captures the
MEC servers’ pricing, while the yellow circles represent the
users’ offloaded data to a corresponding server. A brighter
color and larger circle correspond to a higher volume of
offloaded data. Also, the first 7 users are behaving in a more
eco-friendly manner (an = 1200), compared to the last 8
users (an = 1). he MEC servers’ maximum price vector is
Pmax = [15, 15, 15, 10, 3, 3, 3][ 1$

Pbit ]. The results indicate that
the environmentally conscious users, i.e., users 1-7, prefer to
offload a greater volume of data to environmentally sustainable

Fig. 4: Data offloading and pricing heatmap.

servers, willingly incurring higher data processing costs to
reduce carbon emissions. On the other hand, the price-sensitive
users, i.e., users 8-15, prioritize offloading their data to lower-
cost servers, with little regard for the environmental impact.

C. Scalability Analysis

In this section, a scalability analysis is performed to demon-
strate the efficiency and robustness of TANDEM framework
for a large-scale setup. The number of users requesting concur-
rently services from the 7 MEC servers ranges from 15 to 50
users, and the rest of the parameters are an = 3000, Bmax

k =
[600, 600, 600, 500, 500, 500, 500][Ebits], Bmax

n = 60[Ebits],
Pmax = [100, . . . , 100][ 1$

Pbit ], Sthr = 0.1, w1 = 0.7, and
w2 = 0.3. Fig. 5a – 5c show the MEC servers’ mean
price, profit, and the users’ mean utility, as a function of
the increasing number of users in the system. The results
show that an increasing number of users results in higher
computing service demand from the MEC servers, driving the
MEC servers to increase their prices (Fig. 5a), and in turn,
increase their profit (Fig. 5b). Given the higher computing
prices, the users’ mean utility decreases (Fig. 5c). Also, it is
observed that the users’ trust remains relatively constant across
different scenarios, as it is unaffected by the number of users
and depends on the MEC servers’ provided services and data
processing capacity.

D. Comparative Scenarios

In this section, a thorough comparative evaluation of the
TANDEM framework to existing data offloading mechanisms
from the state of the art is performed to demonstrate its
benefits in terms of reducing the servers’ carbon emissions,
while serving the users’ computing demands. The following
comparative mechanisms are considered: (i) Green: The users
proportionally offload their data to the MEC servers based
on the servers’ environmental sustainability and prioritizing
greener options; (ii) Cost-driven: the users offload their data
in proportion to the pricing policies of the MEC servers
and favoring the most cost-effective options as determined
by the TANDEM framework for fairness in the comparison;
(iii) Eco-Agnostic: the users make data offloading decisions
without considering the MEC servers’ environmental impact,
i.e., Sn,k =

bn,k∑
∀n∈N bn,k

· Bmax
k∑

∀k∈K Bmax
k

; and (iv) Social-
Ignorance: the users disregard their social interactions with
their peers when determining their optimal data offloading
strategies, i.e., τn,k = 1,∀n ∈ N ,∀k ∈ K. For the
comparative evaluation, we consider an = 3000, Bmax

k =



Fig. 5: Scalability analysis: MEC servers’ (a) mean price, (b) mean profit, and (c) users’ mean utility.

Fig. 6: Comparative evaluation.

[600, 600, 600, 500, 500, 500, 500][Ebits], Bmax
n = 60[Ebits],

and Pmax = [100, . . . , 100][ 1$
Pbit ].

The results reveal that the TANDEM framework concludes
to the lowest carbon emissions compared to all the comparative
scenarios (Fig. 6) while the scenarios where the users are
solely driven by the cost result in the worst environmental
impact, i.e., cost-driven scenario. Also, the results show that as
the users either become eco-agnostic or socially ignorant, the
resulting carbon emissions increase in the system. Finally, the
results demonstrate that the simple consideration of the MEC
servers’ carbon emissions in the data offloading decision-
making process, results in worse outcomes than the TANDEM
framework, as the latter also exploits the users’ social inter-
action with their peers in order to gain rich information and
ultimately shape their data offloading decisions.

VI. CONCLUSION

In this paper, a novel social-aware trust-based data offload-
ing framework for MEC environments, named TANDEM,
is introduced to jointly optimize the users’ data offloading
strategies and MEC servers’ dynamic pricing policies. TAN-
DEM integrates a social trust model that leverages both the
direct interactions of the users with the MEC servers, as well
as their peers’ feedback to guide their offloading decisions.
TANDEM is based on a Stackelberg game-theoretic approach
to optimize the MEC servers’ and the users’ strategies.
Detailed experimental results confirm TANDEM’s ability to
outperform existing methods while significantly reducing the
carbon emissions in MEC environments. Part of our current
and future work is the extension of the TANDEM framework

to accommodate also the MEC servers’ energy consumption
and jointly improve the edge computing sustainability.
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